1-2-oleoylphosphatidylcholine and dodecyldimethylamine-oxide

1-2-oleoylphosphatidylcholine has been researched along with dodecyldimethylamine-oxide* in 4 studies

Other Studies

4 other study(ies) available for 1-2-oleoylphosphatidylcholine and dodecyldimethylamine-oxide

ArticleYear
Solubilisation of model membrane by DDAO surfactant - partitioning, permeabilisation and liposome-micelle transition.
    General physiology and biophysics, 2020, Volume: 39, Issue:2

    Solubilisation of model membranes of dioleoylphosphatidylcholine (DOPC) and DOPCcholesterol (CHOL) induced by surfactant N,N-dimethyl-1-dodecanamine-N-oxide (DDAO) was studied. At the maintained pH ~ 7.5, the DDAO molecules are in their neutral state with respect to the pK ~ 5. Pore formation in lipid bilayer was studied by fluorescence probe leakage method. The changes in the size of lipid aggregates upon increasing DDAO concentration were followed turbidimetrically. Effective ratio Re at different steps of the solubilisation process was determined. The molar partition coefficient of DDAO in case of the DOPC membrane is Kp = 2262 ± 379, for DOPC-CHOL membrane Kp = 2092 ± 594. Within the experimental error, the partition coefficient, as well as effective ratios Re, are not considerably influenced when one third of DOPC molecules is substituted with CHOL (DOPC:CHOL = 2:1). Constituents of buffer (50 mmol/dm3 PBS, 150 mmol/dm3 NaCl) caused aggregation of DOPC and DOPC-CHOL unilamellar liposomes at zero and low DDAO concentration, as was shown by SANS, turbidimetry and DIC microscopy. After solubilisation of bilayer structures by surfactant, mixed DOPC-DDAO and DOPC-CHOL-DDAO micelles with the shape of cylinders with elliptical cross section were detected.

    Topics: Cholesterol; Dimethylamines; Lipid Bilayers; Liposomes; Micelles; Phosphatidylcholines; Surface-Active Agents

2020
Effect of amphiphilic surfactant LDAO on the solubilization of DOPC vesicles and on the activity of Ca(2+)-ATPase reconstituted in DOPC vesicles.
    General physiology and biophysics, 2007, Volume: 26, Issue:4

    Solubilization of large unilamellar 1,2-dioleoylphosphatidylcholine (DOPC) vesicles by N-dodecyl-N,N-dimethylamine-N-oxide (LDAO) was studied using turbidimetry. From turbidity data, the LDAO partition coefficient between the aqueous phase and DOPC bilayers was obtained. Using this partition coefficient, the LDAO:DOPC molar ratio in the bilayer was calculated and effects of LDAO on the bilayer stability, bilayer thickness and on the phosphohydrolase activity of sarcoplasmic reticulum Ca(2+) transporting ATPase (SERCA) reconstituted into DOPC were compared at the same LDAO:DOPC molar ratios in the bilayer. The sequence "bilayers in vesicles - bilayer fragments (flat mixed micelles) - tubular mixed micelles - globular mixed micelles" was suggested for the solubilization mechanism of DOPC vesicles from the combined turbidimetric and small-angle neutron scattering (SANS) results. The effective molecular packing parameter delta = 0.5, corresponding to the mixed bilayer - mixed tubular micelle transition, was calculated from fragmental DOPC and LDAO volumes at the molar ratio LDAO:DOPC = 2.00 in bilayers, in the middle of transition region observed earlier experimentally by small-angle neutron scattering (SANS). The bilayer thickness decrease induced by LDAO in DOPC observed by SANS did not result in the SERCA phosphohydrolase activity decrease and this indicates that some other factors compensated this bilayer effect of LDAO. The ATPase activity decrease at higher LDAO concentrations was caused by the bilayer deformation. This deformation resulted in the formation of non-bilayer aggregates in LDAO+DOPC system.

    Topics: Calcium-Transporting ATPases; Dimethylamines; Lipid Bilayers; Nephelometry and Turbidimetry; Neutron Diffraction; Phosphatidylcholines; Scattering, Small Angle; Solubility; Surface-Active Agents; Unilamellar Liposomes

2007
Influence of N-dodecyl-N,N-dimethylamine N-oxide on the activity of sarcoplasmic reticulum Ca(2+)-transporting ATPase reconstituted into diacylphosphatidylcholine vesicles: efects of bilayer physical parameters.
    Biophysical chemistry, 2006, Jan-01, Volume: 119, Issue:1

    Sarcoplasmic reticulum Ca-transporting ATPase (EC 3.6.1.38) was isolated from rabbit white muscle, purified and reconstituted into vesicles of synthetic diacylphosphatidylcholines with monounsaturated acyl chains using the cholate dilution method. In fluid bilayers at 37 degrees C, the specific activity of ATPase displays a maximum (31.5+/-0.8 IU/mg) for dioleoylphosphatidylcholine (diC18:1PC) and decreases progressively for both shorter and longer acyl chain lengths. Besides the hydrophobic mismatch between protein and lipid bilayer, changes in the bilayer hydration and lateral interactions detected by small angle neutron scattering (SANS) can contribute to this acyl chain length dependence. When reconstituted into dierucoylphosphatidylcholine (diC22:1PC), the zwitterionic surfactant N-dodecyl-N,N-dimethylamine N-oxide (C12NO) stimulates the ATPase activity from 14.2+/-0.6 to 32.5+/-0.8 IU/mg in the range of molar ratios C12NO:diC22:1PC=0/1.2. In dilauroylphosphatidylcholines (diC12:0PC) and diC18:1PC, the effect of C12NO is twofold-the ATPase activity is stimulated at low and inhibited at high C12NO concentrations. In diC18:1PC, it is observed an increase of activity induced by C12NO in the range of molar ratios C12NO:diC18:1PC< or =1.3 in bilayers, where the bilayer thickness estimated by SANS decreases by 0.4+/-0.1 nm. In this range, the 31P-NMR chemical shift anisotropy increases indicating an effect of C12NO on the orientation of the phosphatidylcholine dipole N(+)-P- accompanied by a variation of the local membrane dipole potential. A decrease of the ATPase activity is observed in the range of molar ratios C12NO:diC18:1PC=1.3/2.5, where mixed tubular micelles are detected by SANS in C12NO+diC18:1PC mixtures. It is concluded that besides hydrophobic thickness changes, the changes in dipole potential and curvature frustration of the bilayer could contribute as well to C12NO effects on Ca(2+)-ATPase activity.

    Topics: Animals; Biological Transport; Calcium-Transporting ATPases; Cholates; Dimethylamines; Hydrophobic and Hydrophilic Interactions; Lipid Bilayers; Magnetic Resonance Spectroscopy; Neutron Diffraction; Oxides; Phosphatidylcholines; Phosphorylcholine; Rabbits; Sarcoplasmic Reticulum; Surface-Active Agents

2006
Small-angle neutron scattering study of N-dodecyl-N,N-dimethylamine N-oxide induced solubilization of dioleoylphosphatidylcholine bilayers in liposomes.
    General physiology and biophysics, 2001, Volume: 20, Issue:2

    Mixtures of N-dodecyl-N,N-dimethylamine N-oxide (DDAO) and 1,2-dioleoylphosphatidyl choline (DOPC) in chloroform/methanol were evaporated, dried and hydrated in excess 2H2O. Aqueous dispersions thus prepared were extruded through polycarbonate filter with pores of diameter 500A. These samples were studied using small-angle neutron scattering. DDAO destabilizes the bilayer in unilamellar liposomes and solubilizes it into mixed micelles whose shape changes with the DDAO : DOPC molar ratio. Bilayers or/and bilayer fragments have been observed up to DDAO : DOPC = 1.5, rod-like particles (tubular, cylindric micelles) at 2.5 < DDAO : DOPC < 3.5, and transition to globular particles (spheroid micelles) at DDAO: DOPC > 4. In bilayers or/and bilayer fragments, DDAO modulates the thickness of the bilayer.

    Topics: Detergents; Dimethylamines; Lipid Bilayers; Neutrons; Phosphatidylcholines; Scattering, Radiation; Solubility

2001