1-2-oleoylphosphatidylcholine and dehydroergosterol

1-2-oleoylphosphatidylcholine has been researched along with dehydroergosterol* in 3 studies

Other Studies

3 other study(ies) available for 1-2-oleoylphosphatidylcholine and dehydroergosterol

ArticleYear
Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains.
    Biophysical journal, 2010, Nov-17, Volume: 99, Issue:10

    Phase diagrams of ternary lipid mixtures containing cholesterol have provided valuable insight into cell membrane behaviors, especially by describing regions of coexisting liquid-disordered (Ld) and liquid-ordered (Lo) phases. Fluorescence microscopy imaging of giant unilamellar vesicles has greatly assisted the determination of phase behavior in these systems. However, the requirement for optically resolved Ld + Lo domains can lead to the incorrect inference that in lipid-only mixtures, Ld + Lo domain coexistence generally shows macroscopic domains. Here we show this inference is incorrect for the low melting temperature phosphatidylcholines abundant in mammalian plasma membranes. By use of high compositional resolution Förster resonance energy transfer measurements, together with electron spin resonance data and spectral simulation, we find that ternary mixtures of DSPC and cholesterol together with either POPC or SOPC, do indeed have regions of Ld + Lo coexistence. However, phase domains are much smaller than the optical resolution limit, likely on the order of the Förster distance for energy transfer (R(0), ∼2-8 nm).

    Topics: Cholesterol; Electron Spin Resonance Spectroscopy; Ergosterol; Fluorescence Resonance Energy Transfer; Lipid Bilayers; Membrane Microdomains; Phase Transition; Phosphatidylcholines; Porphobilinogen; Surface Properties

2010
The fluorescent cholesterol analog dehydroergosterol induces liquid-ordered domains in model membranes.
    Chemistry and physics of lipids, 2009, Volume: 159, Issue:2

    The fluorescent sterol dehydroergosterol (DHE) is often used as a marker for cholesterol in cellular studies. We show by vesicle fluctuation analysis that DHE has a lower ability than cholesterol to stiffen lipid bilayers suggesting less efficient packing with phospholipid acyl chains. Despite this difference, we found by fluorescence and atomic force microscopy, that DHE induces liquid-ordered/-disordered coexistent domains in giant unilamellar vesicles (GUVs) and supported bilayers made of dipalmitoylphosphatidylcholine (DPPC), dioleylphosphatidylcholine (DOPC) and DHE or cholesterol. DHE-induced phases have a height difference of 0.9-1 nm similar as known for cholesterol-containing domains. DHE not only promotes formation of liquid-liquid immiscibility but also shows strong partition preference for the liquid-ordered phase further supporting its suitability as cholesterol probe.

    Topics: 1,2-Dipalmitoylphosphatidylcholine; Cholesterol; Ergosterol; Fluorescent Dyes; Lipid Bilayers; Membranes, Artificial; Microscopy, Fluorescence; Phosphatidylcholines; Unilamellar Liposomes

2009
Relationship between sterol/steroid structure and participation in ordered lipid domains (lipid rafts): implications for lipid raft structure and function.
    Biochemistry, 2004, Feb-03, Volume: 43, Issue:4

    The formation and stability of ordered lipid domains (rafts) in model membrane vesicles were studied using a series of sterols and steroids structurally similar to cholesterol. In one assay, insolubility in Triton X-100 was assessed in bilayers composed of sterol/steroid mixed with dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine, or a 1:1 mixture of these phospholipids. In a second assay fluorescence quenching was used to determine the degree of ordered domain formation in bilayers containing sterol/steroid and a 1:1 mixture of DPPC and a quencher-carrying phosphatidylcholine. Both methods showed that several single modifications of the cholesterol structure weaken, but do not fully abolish, the ability of sterols and steroids to promote ordered domain formation when mixed with DPPC. Some of these modifications included a shift of the double bond from the 5-6 carbons (cholesterol) to 4-5 carbons (allocholesterol), derivatization of the 3-OH (cholesterol methyl ether, cholesteryl formate), and alteration of the 3-hydroxy to a keto group (cholestanone). An oxysterol involved in atherosclerosis, 7-ketocholesterol, formed domains with DPPC that were as thermally stable as those with cholesterol although not as tightly packed as judged by fluorescence anisotropy. It was also found that 7-ketocholesterol has fluorescence quenching properties making it a useful spectroscopic probe. Lathosterol, which has a 7-8 carbon double bond in place of the 5-6 double bond of cholesterol, formed rafts with DPPC that were at least as detergent-resistant as, and even more thermally stable than, rafts containing cholesterol. Because lathosterol is an intermediate in cholesterol biosynthesis, we conclude it is unlikely that sterol biosynthesis continues past lathosterol in order to create a raft-favoring lipid.

    Topics: 1,2-Dipalmitoylphosphatidylcholine; Cholesterol; Detergents; Ergosterol; Fluorescence Polarization; Ketocholesterols; Lipid Bilayers; Membrane Microdomains; Octoxynol; Phosphatidylcholines; Solubility; Spectrometry, Fluorescence; Spectrophotometry; Steroids; Sterols; Structure-Activity Relationship

2004