1-2-oleoylphosphatidylcholine has been researched along with decane* in 5 studies
5 other study(ies) available for 1-2-oleoylphosphatidylcholine and decane
Article | Year |
---|---|
Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes.
Asymmetric lipid giant vesicles have been used to model the biochemical reactions in cell membranes. However, methods for producing asymmetric giant vesicles lead to the inclusion of an organic solvent layer that affects the mechanical and physical characteristics of the membrane. Here we describe the formation of asymmetric giant vesicles that include little organic solvent, and use them to investigate the dynamic responses of lipid molecules in the vesicle membrane. We formed the giant vesicles via the inhomogeneous break-up of a lipid microtube generated by applying a jet flow to an asymmetric planar lipid bilayer. The asymmetric giant vesicles showed a lipid flip-flop behaviour in the membrane, superficially similar to the lipid flip-flop activity observed in apoptotic cells. In vitro synthesis of membrane proteins into the asymmetric giant vesicles revealed that the lipid asymmetry in bilayer membranes improves the reconstitution ratio of membrane proteins. Our asymmetric giant vesicles will be useful in elucidating lipid-lipid and lipid-membrane protein interactions involved in the regulation of cellular functions. Topics: 1,2-Dipalmitoylphosphatidylcholine; Alkanes; Bacteriocins; Connexin 43; Fluorescent Dyes; Lipid Bilayers; Particle Size; Peptides, Cyclic; Phosphatidylcholines; Phosphatidylserines; Rhodamines; Unilamellar Liposomes | 2016 |
Membrane composition of jetted lipid vesicles: a Raman spectroscopy study.
Microfluidic jetting is a promising method to produce giant unilamellar phospholipid vesicles for mimicking living cells in biomedical studies. We have investigated the chemical composition of membranes of vesicles prepared using this approach by means of Raman scattering spectroscopy. The membranes of all jetted vesicles are found to contain residuals of the organic solvent decane used in the preparation of the initial planar membrane. The decane inclusions are randomly distributed over the vesicle surface area and vary in thickness from a few to several tens of nanometers. Our findings point out that the membrane properties of jetted vesicles may differ considerably from those of vesicles prepared by other methods and from those of living cells. Topics: Alkanes; Lipid Bilayers; Microfluidics; Phosphatidylcholines; Solvents; Spectrum Analysis, Raman; Unilamellar Liposomes | 2012 |
Small-angle neutron scattering study of the lipid bilayer thickness in unilamellar dioleoylphosphatidylcholine vesicles prepared by the cholate dilution method: n-decane effect.
Previous X-ray diffraction studies on fully hydrated fluid lamellar egg phosphatidylcholine phases indicated a approximately 10 A increase of bilayer thickness in the presence of excess n-decane [Biochim. Biophys. Acta 597 (1980) 455], while the small-angle neutron scattering (SANS) on unilamellar extruded dioleoylphosphatidylcholine (DOPC) vesicles detected substantially smaller 2.4+/-1.3 A bilayer thickness increase at n-decane/DOPC molar ratio of 1.2 [Biophys. Chem. 88 (2000) 165]. The purpose of the present study is to investigate the n-decane effect on the bilayer thickness in unilamellar DOPC vesicles prepared by the sodium cholate (NaChol) dilution method. Mixed DOPC+NaChol micelles at DOPC and NaChol concentrations of 0.1 mol/l were prepared in 2H(2)O containing 0.135 mol/l NaCl. This micellar solution was diluted in 0.135 mol/l NaCl in 2H(2)O to reach the final DOPC and NaChol concentrations of 0.008 mol/l. Thirty microliters of n-decane solution in methanol was added to 1 ml of this dispersion. After methanol evaporation, SANS was conducted on the dispersions. From the Kratky-Porod plot ln[I(Q)Q(2)] vs. Q(2) of SANS intensity I(Q) in the range of scattering vector values Q corresponding to interval 0.001 A(-2) Topics: Alkanes; Ca(2+) Mg(2+)-ATPase; Deuterium Oxide; Lipid Bilayers; Mathematics; Neutron Diffraction; Phosphatidylcholines; Radioisotope Dilution Technique; Sodium Cholate | 2003 |
Small-angle neutron scattering study of the n-decane effect on the bilayer thickness in extruded unilamellar dioleoylphosphatidylcholine liposomes.
Dioleoylphosphatidylcholine (DOPC) and n-decane were mixed and hydrated afterwards in an excess of heavy water at 1 wt.% of DOPC. From this dispersion, unilamellar liposomes were prepared by extrusion through polycarbonate filter with 500-A pores. Small-angle neutron scattering (SANS) was conducted on these liposomes. From the Kratky-Porod plot ln[I(Q)Q2] vs. Q2 of SANS intensity I(Q) in the range of scattering vectors Q corresponding to the interval 0.001 A(-2) < or = Q2 < or = 0.006 A(-2), the liposome bilayer radius of gyration Rg and the bilayer thickness parameter d(g) = 12(0.5)Rg were obtained. The values of d(g) indicated that the bilayer thickness is within the experimental error constant up to n-decane/DOPC approximately 0.5 molar ratio, and then increases by 2.4 +/- 1.3 A up to n-decane/DOPC = 1.2 molar ratio. Topics: Alkanes; Lipid Bilayers; Liposomes; Neutrons; Phosphatidylcholines; Spectrophotometry | 2000 |
Gramicidin channels in phospholipid bilayers with unsaturated acyl chains.
In organic solvents gramicidin A (gA) occurs as a mixture of slowly interconverting double-stranded dimers. Membrane-spanning gA channels, in contrast, are almost exclusively single-stranded beta(6,3)-helical dimers. Based on spectroscopic evidence, it has previously been concluded that the conformational preference of gA in phospholipid bilayers varies as a function of the degree of unsaturation of the acyl chains. Double-stranded pi pi(5,6)-helical dimers predominate (over single-stranded beta(6,3)-helical dimers) in lipid bilayer membranes with polyunsaturated acyl chains. We therefore examined the characteristics of channels formed by gA in 1-palmitoyl-2-oleoylphosphatidylcholine/n-decane, 1,2-dioleoylphosphatidylcholine/n-decane, and 1,2-dilinoleoylphosphatidylcholine/n-decane bilayers. We did not observe long-lived channels that could be conducting double-stranded pi pi(5,6)-helical dimers in any of these different membrane environments. We conclude that the single-stranded beta(6,3)-helical dimer is the only conducting species in these bilayers. Somewhat surprisingly, the average channel duration and channel-forming potency of gA are increased in dilinoleoylphosphatidylcholine/n-decane bilayers compared to 1-palmitoyl-2-oleoylphosphatidylcholine/n-decane and dioleoylphosphatidylcholine/n-decane bilayers. To test for specific interactions between the aromatic side chains of gA and the acyl chains of the bilayer, we examined the properties of channels formed by gramicidin analogues in which the four tryptophan residues were replaced with naphthylalanine (gN), tyrosine (gT), and phenylalanine (gM). The results show that all of these analogue channels experience the same relative stabilization when going from dioleoylphosphatidylcholine to dilinoleoylphosphatidylcholine bilayers. Topics: Alkanes; Amino Acid Sequence; Fatty Acids, Unsaturated; Gramicidin; Ion Channels; Lipid Bilayers; Models, Biological; Models, Structural; Molecular Sequence Data; Phosphatidylcholines; Protein Structure, Secondary; Structure-Activity Relationship | 1997 |