1-2-oleoylphosphatidylcholine and 1-2-diphytanoylphosphatidylcholine

1-2-oleoylphosphatidylcholine has been researched along with 1-2-diphytanoylphosphatidylcholine* in 15 studies

Other Studies

15 other study(ies) available for 1-2-oleoylphosphatidylcholine and 1-2-diphytanoylphosphatidylcholine

ArticleYear
Binding of DNA origami to lipids: maximizing yield and switching via strand displacement.
    Nucleic acids research, 2021, 11-08, Volume: 49, Issue:19

    Liposomes are widely used as synthetic analogues of cell membranes and for drug delivery. Lipid-binding DNA nanostructures can modify the shape, porosity and reactivity of liposomes, mediated by cholesterol modifications. DNA nanostructures can also be designed to switch conformations by DNA strand displacement. However, the optimal conditions to facilitate stable, high-yield DNA-lipid binding while allowing controlled switching by strand displacement are not known. Here, we characterized the effect of cholesterol arrangement, DNA structure, buffer and lipid composition on DNA-lipid binding and strand displacement. We observed that binding was inhibited below pH 4, and above 200 mM NaCl or 40 mM MgCl2, was independent of lipid type, and increased with membrane cholesterol content. For simple motifs, binding yield was slightly higher for double-stranded DNA than single-stranded DNA. For larger DNA origami tiles, four to eight cholesterol modifications were optimal, while edge positions and longer spacers increased yield of lipid binding. Strand displacement achieved controlled removal of DNA tiles from membranes, but was inhibited by overhang domains, which are used to prevent cholesterol aggregation. These findings provide design guidelines for integrating strand displacement switching with lipid-binding DNA nanostructures. This paves the way for achieving dynamic control of membrane morphology, enabling broader applications in nanomedicine and biophysics.

    Topics: Cholesterol; DNA; DNA, Single-Stranded; Hydrogen-Ion Concentration; Kinetics; Liposomes; Magnesium Chloride; Nanostructures; Nucleic Acid Conformation; Phosphatidylcholines; Phosphatidylethanolamines; Sodium Chloride; Solutions; Thermodynamics

2021
Functional reconstitution of cell-free synthesized purified K
    Biochimica et biophysica acta. Biomembranes, 2017, Volume: 1859, Issue:12

    The study of ion channel activity and the screening of possible inhibitor molecules require reliable methods for production of active channel proteins, their insertion into artificial membranes and for the measurement of their activity. Here we report on cell-free expression of soluble and active K

    Topics: Elapid Venoms; Escherichia coli; Fluorescent Dyes; Gene Expression; Genetic Vectors; Humans; Isoxazoles; Kv1.1 Potassium Channel; Kv1.3 Potassium Channel; Membrane Potentials; Phosphatidylcholines; Phosphatidylethanolamines; Phosphatidylserines; Proteolipids; Recombinant Proteins; Subcellular Fractions; Valinomycin

2017
Stable Free-Standing Lipid Bilayer Membranes in Norland Optical Adhesive 81 Microchannels.
    Analytical chemistry, 2016, 08-02, Volume: 88, Issue:15

    We report a simple, cost-effective, and reproducible method to form free-standing lipid bilayer membranes in microdevices made with Norland Optical Adhesive 81 (NOA81). Surface treatment with either alkylsilane or fluoroalkylsilane enables the self-assembly of stable 1,2-diphytanoyl-sn-glycero-3-phosphocholine 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dihexadecanoyl-sn-glycero-3-phosphocholine (DPPC) membranes. Capacitance measurements are used to characterize the lipid bilayer and to follow its formation in real-time. With current recordings, we detect the insertion of single α-hemolysin pores into the bilayer membrane, demonstrating the possibility of using this device for single-channel electrophysiology sensing applications. Optical transparency of the device and vertical position of the lipid bilayer with respect to the microscope focal plane allows easy integration with other single-molecule techniques, such as optical tweezers. Therefore, this method to form long-lived lipid bilayers finds a wide range of applications, from sensing measurements to biophysical studies of lipid bilayers and associated proteins.

    Topics: 1,2-Dipalmitoylphosphatidylcholine; Adhesives; Electric Capacitance; Hemolysin Proteins; Lab-On-A-Chip Devices; Lipid Bilayers; Phosphatidylcholines; Silanes

2016
Atomically detailed lipid bilayer models for the interpretation of small angle neutron and X-ray scattering data.
    Biochimica et biophysica acta, 2015, Volume: 1848, Issue:2

    We present a new atom density profile (ADP) model and a statistical approach for extracting structural characteristics of lipid bilayers from X-ray and neutron scattering data. Models for five lipids with varying head and tail chemical composition in the fluid phase, 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG), are optimized using a simplex based method to simultaneously reproduce both neutron and X-ray scattering data. Structural properties are determined using statistical analysis of multiple optimal model structures. The method and models presented make minimal assumptions regarding the atomic configuration, while taking into account the underlying physical properties of the system. The more general model and statistical approach yield data with well defined uncertainties, indicating the precision in determining density profiles, atomic locations, and bilayer structural characteristics. Resulting bilayer structures include regions exhibiting large conformational variation. Due to the increased detail in the model, the results demonstrate the possibility of a distinct hydration layer within the interfacial (backbone) region.

    Topics: Lipid Bilayers; Models, Chemical; Neutron Diffraction; Phosphatidylcholines; Phosphatidylglycerols; Phosphatidylserines; Quantum Theory; Scattering, Radiation; X-Ray Diffraction

2015
Switch-like responses of two cholesterol sensors do not require protein oligomerization in membranes.
    Biophysical journal, 2015, Mar-24, Volume: 108, Issue:6

    Many cellular processes are sensitive to levels of cholesterol in specific membranes and show a strongly sigmoidal dependence on membrane composition. The sigmoidal responses of the cholesterol sensors involved in these processes could arise from several mechanisms, including positive cooperativity (protein effects) and limited cholesterol accessibility (membrane effects). Here, we describe a sigmoidal response that arises primarily from membrane effects due to sharp changes in the chemical activity of cholesterol. Our models for eukaryotic membrane-bound cholesterol sensors are soluble bacterial toxins that show an identical switch-like specificity for endoplasmic reticulum membrane cholesterol. We show that truncated versions of these toxins fail to form oligomers but still show sigmoidal binding to cholesterol-containing membranes. The nonlinear response emerges because interactions between bilayer lipids control cholesterol accessibility to toxins in a threshold-like fashion. Around these thresholds, the affinity of toxins for membrane cholesterol varies by >100-fold, generating highly cooperative lipid-dependent responses independently of protein-protein interactions. Such lipid-driven cooperativity may control the sensitivity of many cholesterol-dependent processes.

    Topics: Bacillus anthracis; Bacterial Proteins; Bacterial Toxins; Cholesterol; Clostridium perfringens; Cytotoxins; Endoplasmic Reticulum; Escherichia coli; Hemolysin Proteins; Lipid Bilayers; Liposomes; Membrane Glycoproteins; Models, Molecular; Nonlinear Dynamics; Phosphatidylcholines; Protein Conformation; Protein Multimerization; Recombinant Proteins

2015
Unsaturated lipids protect the integral membrane peptide gramicidin A from singlet oxygen.
    FEBS letters, 2014, May-02, Volume: 588, Issue:9

    In contrast to expectations that unsaturated fatty acids contribute to oxidative stress by providing a source of lipid peroxides, we demonstrated the protective effect of double bonds in lipids on oxidative damage to membrane proteins. Photodynamic inactivation of gramicidin channels was decreased in unsaturated lipid compared to saturated lipid bilayers. By estimating photosensitizer (boronated chlorine e6 amide) binding to the membrane with the current relaxation technique, the decrease in gramicidin photoinactivation was attributed to singlet oxygen scavenging by double bonds in lipids rather than to the reduction in photosensitizer binding. Gramicidin protection by unsaturated lipids was also observed upon induction of oxidative stress with tert-butyl hydroperoxide.

    Topics: Adsorption; Fatty Acids, Unsaturated; Gramicidin; Lipid Bilayers; Membrane Potentials; Oxidants; Oxidation-Reduction; Oxidative Stress; Phosphatidylcholines; Singlet Oxygen; tert-Butylhydroperoxide

2014
Droplet interface bilayer reconstitution and activity measurement of the mechanosensitive channel of large conductance from Escherichia coli.
    Journal of the Royal Society, Interface, 2014, Sep-06, Volume: 11, Issue:98

    Droplet interface bilayers (DIBs) provide an exciting new platform for the study of membrane proteins in stable bilayers of controlled composition. To date, the successful reconstitution and activity measurement of membrane proteins in DIBs has relied on the use of the synthetic lipid 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC). We report the functional reconstitution of the mechanosensitive channel of large conductance (MscL) into DIBs composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), a lipid of significantly greater biological relevance than DPhPC. MscL functionality has been demonstrated using a fluorescence-based assay, showing that dye flow occurs across the DIB when MscL is gated by the cysteine reactive chemical 2-(trimethylammonium)ethyl methane thiosulfonate bromide (MTSET). MscL has already been the subject of a number of studies investigating its interaction with the membrane. We propose that this method will pave the way for future MscL studies looking in detail at the effects of controlled composition or membrane asymmetry on MscL activity using biologically relevant lipids and will also be applicable to other lipid-protein systems, paving the way for the study of membrane proteins in DIBs with biologically relevant lipids.

    Topics: Escherichia coli; Escherichia coli Proteins; Fluorescent Dyes; Glycerylphosphorylcholine; Ion Channels; Lipid Bilayers; Lipids; Mesylates; Phosphatidylcholines

2014
Fast membrane hemifusion via dewetting between lipid bilayers.
    Soft matter, 2014, Dec-14, Volume: 10, Issue:46

    The behavior of lipid bilayers is important to understand the functionality of cells like the trafficking of ions. Standard procedures to explore the properties of lipid bilayers and hemifused states typically use supported membranes or vesicles. Both techniques have several shortcomings in terms of bio-relevance or accessibility for measurements. In this article, the formation of individual free standing hemifused states between model cell membranes is studied using an optimized microfluidic scheme which allows for simultaneous optical and electrophysiological measurements. In the first step, two model membranes are formed at a desired location within a microfluidic device using a variation of the droplet interface bilayer (DiB) technique. In the second step, the two model membranes are brought into contact forming a single hemifused state. For all tested lipids, the hemifused state between free standing membranes forms within hundreds of milliseconds, i.e. several orders of magnitude faster than those reported in literature. The formation of a hemifused state is observed as a two stage process, whereas the second stage can be explained as a dewetting process under no-slip boundary conditions. The formed hemifusion states have a long lifetime and a single fusion event can be observed when triggered by an applied electric field as demonstrated for monoolein.

    Topics: Electric Capacitance; Glycerides; Lipid Bilayers; Microfluidic Analytical Techniques; Phosphatidylcholines

2014
Structure and elasticity of lipid membranes with genistein and daidzein bioflavinoids using X-ray scattering and MD simulations.
    The journal of physical chemistry. B, 2012, Apr-05, Volume: 116, Issue:13

    This work reports the effects of the bioflavinoids genistein and daidzein on lipid bilayers as determined by volume measurements, X-ray scattering, and molecular dynamics simulations. The experimental and simulated total molecular volumes were found to be in outstanding agreement with each other before the addition of genistein and daidzein and also after their addition. Both bioflavinoids inserted into the hydrocarbon region of both DOPC and diphytanoylPC near the carbonyls of the lipids and both decreased the bilayer thicknesses. The long axes of both bioflavinoids were oriented nearly parallel to the plane of the bilayer with their carbonyl groups preferentially pointed toward the proximal surface. A difference is that daidzein had a solubility limit of ∼0.14 mol fraction in DOPC (∼0.12 mol fraction in diphytanoylPC), whereas genistein was soluble at least to 0.20 mol fraction in both lipid membranes. Measurements of bending modulus K(C) and simulation results for area compressibility modulus K(A) indicate that both bioflavinoids soften bilayers.

    Topics: Crystallography, X-Ray; Elasticity; Genistein; Isoflavones; Lipid Bilayers; Models, Molecular; Molecular Dynamics Simulation; Molecular Structure; Phosphatidylcholines

2012
Linear rate-equilibrium relations arising from ion channel-bilayer energetic coupling.
    Proceedings of the National Academy of Sciences of the United States of America, 2011, Aug-02, Volume: 108, Issue:31

    Linear rate-equilibrium (RE) relations, also known as linear free energy relations, are widely observed in chemical reactions, including protein folding, enzymatic catalysis, and channel gating. Despite the widespread occurrence of linear RE relations, the principles underlying the linear relation between changes in activation and equilibrium energy in macromolecular reactions remain enigmatic. When examining amphiphile regulation of gramicidin channel gating in lipid bilayers, we noted that the gating process could be described by a linear RE relation with a simple geometric interpretation. This description is possible because the gating process provides a well-understood reaction, in which structural changes in a bilayer-embedded model protein can be studied at the single-molecule level. It is thus possible to obtain quantitative information about the energetics of the reaction transition state and its position on a spatial coordinate. It turns out that the linear RE relation for the gramicidin monomer-dimer reaction can be understood, and the quantitative relation between changes in activation energy and equilibrium energy can be interpreted, by considering the effects of amphiphiles on the changes in bilayer elastic energy associated with channel gating. We are not aware that a similar simple mechanistic explanation of a linear RE relation has been provided for a chemical reaction in a macromolecule. RE relations generally should be useful for examining how amphiphile-induced changes in bilayer properties modulate membrane protein folding and function, and for distinguishing between direct (e.g., due to binding) and indirect (bilayer-mediated) effects.

    Topics: Algorithms; Capsaicin; Chromans; Energy Transfer; Genistein; Gramicidin; Hydrophobic and Hydrophilic Interactions; Ion Channel Gating; Ion Channels; Kinetics; Lipid Bilayers; Membrane Lipids; Models, Chemical; Octoxynol; Phosphatidylcholines; Protein Folding; Rosiglitazone; Thiazolidinediones; Troglitazone

2011
A microfluidic approach for high-throughput droplet interface bilayer (DIB) formation.
    Chemical communications (Cambridge, England), 2010, Mar-14, Volume: 46, Issue:10

    We present a simple, automated method for high-throughput formation of droplet interface bilayers (DIBs) in a microfluidic device. We can form complex DIB networks that are able to fill predefined three dimensional architectures. Moreover, we demonstrate the flexibility of the system by using a variety of lipids including 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC).

    Topics: Fluorescein; Lipid Bilayers; Microfluidic Analytical Techniques; Oils; Phosphatidylcholines; Water

2010
Amphiphile regulation of ion channel function by changes in the bilayer spring constant.
    Proceedings of the National Academy of Sciences of the United States of America, 2010, Aug-31, Volume: 107, Issue:35

    Many drugs are amphiphiles that, in addition to binding to a particular target protein, adsorb to cell membrane lipid bilayers and alter intrinsic bilayer physical properties (e.g., bilayer thickness, monolayer curvature, and elastic moduli). Such changes can modulate membrane protein function by altering the energetic cost (DeltaG(bilayer)) of bilayer deformations associated with protein conformational changes that involve the protein-bilayer interface. But amphiphiles have complex effects on the physical properties of lipid bilayers, meaning that the net change in DeltaG(bilayer) cannot be predicted from measurements of isolated changes in such properties. Thus, the bilayer contribution to the promiscuous regulation of membrane proteins by drugs and other amphiphiles remains unknown. To overcome this problem, we use gramicidin A (gA) channels as molecular force probes to measure the net effect of amphiphiles, at concentrations often used in biological research, on the bilayer elastic response to a change in the hydrophobic length of an embedded protein. The effects of structurally diverse amphiphiles can be described by changes in a phenomenological bilayer spring constant (H(B)) that summarizes the bilayer elastic properties, as sensed by a bilayer-spanning protein. Amphiphile-induced changes in H(B), measured using gA channels of a particular length, quantitatively predict changes in lifetime for channels of a different length--as well as changes in the inactivation of voltage-dependent sodium channels in living cells. The use of gA channels as molecular force probes provides a tool for quantitative, predictive studies of bilayer-mediated regulation of membrane protein function by amphiphiles.

    Topics: Algorithms; Capsaicin; Cell Line; Cell Membrane; Genistein; Gramicidin; Humans; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Ion Channel Gating; Ion Channels; Isoflavones; Kinetics; Lipid Bilayers; Membrane Potentials; Membrane Proteins; Octoxynol; Phloretin; Phosphatidylcholines; Protein Conformation

2010
Roles of curvature and hydrophobic interstice energy in fusion: studies of lipid perturbant effects.
    Biochemistry, 2004, Mar-30, Volume: 43, Issue:12

    We have examined the effects of small amounts (1-4 mol %) of lipids of different molecular shapes, long chain lipids, and hydrocarbon on the kinetics of PEG-mediated fusion of 1,2-dioleoyl-3-sn-phosphatidylcholine/1,2-dioleoyl-3-sn-phosphatidylethanolamine/sphingomyelin/cholesterol (DOPC/DOPE/SM/CH, 35:30:15:30) sonicated vesicles. The effects of these lipid perturbants were different for different steps in the fusion process and varied with the ratio of the cross-sectional areas of headgroup to acyl chain moieties. For lipids with a ratio <1 (negative intrinsic curvature), a decrease in this ratio led to a dramatic increase in the initial rate of vesicle contents mixing but left the initial rate of lipid mixing roughly unchanged. For lipids with ratios >1 (positive intrinsic curvature), the initial rates of both lipid and contents mixing decreased mildly with increasing ratio. In the context of the "stalk model" for fusion, lipid mixing reflects mainly formation of the initial fusion intermediate (stalk), while contents mixing reflects conversion of this intermediate either to a second intermediate or to a fusion pore. Results with positively curved lipids (ganglioside, GM1; lysophosphatidylcholine, LPCs) and negatively curved lipids (dioleoylglycerol, DOG, and 1,2-diphytanoyl-sn-glyvero-3-phosphatidylcholine, DPhPC) can be taken as supportive of the usual interpretation of the stalk model in terms of bending energy, but enhancement of fusion in the presence of long-chain phospholipids, hexadecane, as well as a mixture of GM1 plus hexadecane could not be explained by their curvature alone. We propose that the ability of a lipid perturbant to compensate for lipid packing mismatch, that is, to lower "void" energy, must be taken into account, along with intrinsic curvature, to explain the ability of lipid perturbants to promote pore formation.

    Topics: Animals; Calorimetry, Differential Scanning; Cattle; Cholesterol; Diglycerides; Fluorescence Polarization; Hydrophobic and Hydrophilic Interactions; Kinetics; Lipid Bilayers; Lysophosphatidylcholines; Membrane Fusion; Membrane Lipids; Models, Chemical; Osmotic Pressure; Phosphatidylcholines; Phosphatidylethanolamines; Polyethylene Glycols; Sheep; Sphingomyelins; Stress, Mechanical

2004
Energetics of pore formation induced by membrane active peptides.
    Biochemistry, 2004, Mar-30, Volume: 43, Issue:12

    Antimicrobial peptides are known to form pores in cell membranes. We study this process in model bilayers of various lipid compositions. We use two of the best-studied peptides, alamethicin and melittin, to represent peptides making two types of pores, that is, barrel-stave pores and toroidal pores. In both cases, the key control variable is the concentration of the bound peptides in the lipid bilayers (expressed in the peptide-lipid molar ratio, P/L). The method of oriented circular dichroism (OCD) was used to monitor the peptide orientation in bilayers as a function of P/L. The same samples were scanned by X-ray diffraction to measure the bilayer thickness. In all cases, the bilayer thickness decreases linearly with P/L and then levels off after P/L exceeds a lipid-dependent critical value, (P/L)*. OCD spectra showed that the helical peptides are oriented parallel to the bilayers as long as P/L < (P/L)*, but as P/L increases over (P/L)*, an increasing fraction of peptides changed orientation to become perpendicular to the bilayer. We analyzed the data by assuming an internal membrane tension associated with the membrane thinning. The free energy containing this tension term leads to a relation explaining the P/L-dependence observed in the OCD and X-ray diffraction measurements. We extracted the experimental parameters from this thermodynamic relation. We believe that they are the quantities that characterize the peptide-lipid interactions related to the mechanism of pore formation. We discuss the meaning of these parameters and compare their values for different lipids and for the two different types of pores. These experimental parameters are useful for further molecular analysis and are excellent targets for molecular dynamic simulation studies.

    Topics: Alamethicin; Animals; Anti-Bacterial Agents; Circular Dichroism; Ion Channels; Lipid Bilayers; Melitten; Membranes, Artificial; Models, Chemical; Phosphatidylcholines; Protein Binding; Spectroscopy, Fourier Transform Infrared; Thermodynamics; X-Ray Diffraction

2004
Effects of hydrostatic pressure on lipid bilayer membranes. I. Influence on membrane thickness and activation volumes of lipophilic ion transport.
    Biophysical journal, 1986, Volume: 50, Issue:1

    Measurements of membrane capacitance, Cm, were performed on lipid bilayers of different lipidic composition (diphytanoyl phosphatidylcholine PPhPC, dioleoyl phosphatidylcholine DOPE, glycerylmonooleate GMO) and containing n-decane as solvent. In the same membranes, the absorption of the lipophilic ions dipicrylamine (DPA-) and tetraphenylborate (TPhB-), and the kinetics of their translocation between the two membrane faces have been studied. The data were obtained from charge pulse relaxation measurements. Upon increasing pressure the specific capacity Cm increased in a fully reversible and reproducible way reflecting a thinning of the membrane that is attributed to extrusion of n-decane from the black membrane area. High pressure decreased the rate constant, ki, for lipophilic ion translocation. After correcting for changes in the height of the energy barrier for translocation due to membrane thinning the pressure dependence of ki yields an apparent activation volume for translocation of approximately 14 cm3/mol both for DPA- and TPhB-. Changes in lipophilic ion absorption following a step of pressure developed with a rather slow time course due to diffusion limitations in solution. The stationary concentration of membrane absorbed lipophilic ions increased with pressure according to an apparent volume of absorption of about -10 cm3/mol. The relevance of the results for the interpretation of the effects of pressure on nerve membrane physiology is discussed.

    Topics: Hydrostatic Pressure; Lipid Bilayers; Models, Biological; Molecular Conformation; Phosphatidylcholines; Phosphatidylethanolamines

1986