1-2-dielaidoylphosphatidylethanolamine and 1-palmitoyl-2-oleoylphosphatidylcholine

1-2-dielaidoylphosphatidylethanolamine has been researched along with 1-palmitoyl-2-oleoylphosphatidylcholine* in 9 studies

Other Studies

9 other study(ies) available for 1-2-dielaidoylphosphatidylethanolamine and 1-palmitoyl-2-oleoylphosphatidylcholine

ArticleYear
Drude Polarizable Force Field for Molecular Dynamics Simulations of Saturated and Unsaturated Zwitterionic Lipids.
    Journal of chemical theory and computation, 2017, Sep-12, Volume: 13, Issue:9

    Additive force fields are designed to account for induced electronic polarization in a mean-field average way, using effective empirical fixed charges. The limitation of this approximation is cause for serious concerns, particularly in the case of lipid membranes, where the molecular environment undergoes dramatic variations over microscopic length scales. A polarizable force field based on the classical Drude oscillator offers a practical and computationally efficient framework for an improved representation of electrostatic interactions in molecular simulations. Building on the first-generation Drude polarizable force field for the dipalmitoylphosphatidylcholine 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) molecule, the present effort was undertaken to improve this initial model and expand the force field to a wider range of phospholipid molecules. New lipids parametrized include dimyristoylphosphatidylcholine (DMPC), dilauroylphosphatidylcholine (DLPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), dipalmitoylphosphatidylethanolamine (DPPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). The iterative optimization protocol employed in this effort led to lipid models that achieve a good balance between reproducing quantum mechanical data on model compound representative of phospholipids and reproducing a range of experimental condensed phase properties of bilayers. A parametrization strategy based on a restrained ensemble-maximum entropy methodology was used to help accurately match the experimental NMR order parameters in the polar headgroup region. All the parameters were developed to be compatible with the remainder of the Drude polarizable force field, which includes water, ions, proteins, DNA, and selected carbohydrates.

    Topics: Diffusion; Lipid Bilayers; Molecular Dynamics Simulation; Phosphatidylcholines; Phosphatidylethanolamines; Phospholipids; Quantum Theory; Thermodynamics

2017
Development of fluorophore dynamics imaging as a probe for lipid domains in model vesicles and cell membranes.
    European biophysics journal : EBJ, 2011, Volume: 40, Issue:2

    The ability to detect raft structures in membranes continues to present a problem, especially in the membranes of live cells. Rafts, generally considered to be small (< 200 nm) sphingolipid-rich regions, are commonly modelled using lipid vesicle systems where the ability of fluorophore-labelled lipids to preferentially locate into domains (basically large rafts) is investigated. Instead, in this study the motional properties of different fluorophores were determined using two-photon excitation and time-correlated single-photon counting coupled with diffraction-limited imaging with polarizing optics in scanning mode to obtain nanosecond rotational correlation time images. To develop the method, well-characterized domain-containing models consisting of giant unilamellar vesicles comprising mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, sphingomyelin and cholesterol were used with the fluorophores diphenylhexatriene, 1-palmitoyl-2-{6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl}-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl). Accordingly, images of rotational correlation times of the probes revealed domain structures for all three probes consistent with other studies using different approaches. Rotational correlation time images of living cell membranes were also observed. The method has the advantage that not only does it enable domains to be visualised or imaged in a unique manner but that it can also potentially provide useful information on the lipid dynamics within the structures.

    Topics: Cell Membrane; Diphenylhexatriene; Fluorescent Dyes; Lipid Bilayers; Membrane Microdomains; Microscopy, Fluorescence; Phosphatidylcholines; Phosphatidylethanolamines; Photons; Unilamellar Liposomes

2011
Covalent conjugation of tetrameric bovine liver catalase to liposome membranes for stabilization of the enzyme tertiary and quaternary structures.
    Colloids and surfaces. B, Biointerfaces, 2009, Mar-01, Volume: 69, Issue:2

    Tetrameric bovine liver catalase (BLC) is unstable because of its dissociation into subunits at low enzyme concentrations and the conformational change of the subunits at high temperatures. In this work, for stabilization of BLC, the enzyme was covalently conjugated with liposome membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), cholesterol and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-glutaryl (NGPE). The NGPE, which was responsible for the BLC/membrane coupling, was altered from 0.05 to 0.2 in its liposomal mole fraction f(G). The catalase-conjugated liposome (CCL) with f(G) of 0.15 showed the maximum number of the conjugated BLC molecules of 28 per liposome. The reactivity of CCLs to H(2)O(2) was as high as that of free BLC at 25 degrees C in Tris-HCl buffer of pH 7.4. Among the CCLs, the catalyst with f(G) of 0.15 was the most stable at 55 degrees C in its enzyme activity in the buffer because the appropriate number of BLC/liposome covalent bonding prevented the dissociation-induced enzyme deactivation. Furthermore, the CCL showed much higher stability at 55 degrees C than the free BLC/enzyme-free liposome mixture and free BLC at the low BLC concentration of 340ng/mL. This was because BLC in the CCL was located in the vicinity of the host membrane regardless of the catalyst concentration, which could induce the effective stabilization effect of the membrane on the enzyme tertiary structure as indicated by the intrinsic tryptophan fluorescence analysis. The results obtained demonstrate the high structural stability of BLC in the CCL system, which was derived from the covalent bonding and interaction between BLC and liposomes.

    Topics: Animals; Catalase; Cattle; Enzyme Stability; Hot Temperature; Liposomes; Liver; Phosphatidylcholines; Phosphatidylethanolamines; Protein Structure, Quaternary; Protein Structure, Tertiary; Spectrometry, Fluorescence

2009
Nucleotide chain length and the morphology of complexes with cationic amphiphiles: (31)P-NMR observations.
    Biochimica et biophysica acta, 2000, Feb-15, Volume: 1463, Issue:2

    31P-NMR and UV spectroscopies were used to study the interactions between cationic amphiphile-containing lipid bilayers and either a phosphorothioate oligonucleotide (OligoS) (n=21) or polyadenylic acid (PolyA) (n approximately 18,000). Multilamellar vesicles (MLVs) were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in binary mixture with either of the cationic lipids, N-[1-(2, 3-dioleoyloxy)propyl]-N',N',N'-trimethylammonium chloride (DOTAP) or cetyltrimethylammonium bromide (CTAB). A UV-difference assay showed that OligoS binding ceased above a 1:1 anion/cation ratio, while PolyA binding continued until a 2:1 ratio was reached, indicating a 'flat' conformation for bound OligoS, but not necessarily for PolyA. Cross-polarization (31)P-NMR of the nucleotide chains bound to 100% DOTAP MLVs produced spectra virtually identical to those of dry powders of OligoS or PolyA, indicating effective immobilization of the surface-bound nucleotide chains. Hahn echo (31)P-NMR showed that MLVs composed of binary mixtures of POPC with DOTAP or CTAB retained a lamellar bilayer architecture upon adding nucleotide chains. At less than stoichiometric anion/cation ratios little or no signal attributable to free nucleotide chains was visible. A narrow signal at the chemical shift expected for phosphorothiodiesters or phosphodiesters became visible at greater levels of added OligoS or PolyA, respectively, indicating the presence of mobile nucleotide chains. Salt addition caused complete desorption of the nucleotide chains. When POPC was replaced with DOPE, binding of OligoS or PolyA produced non-bilayer lipid phases in the presence of DOTAP, but not in the presence of CTAB.

    Topics: Base Sequence; Cetrimonium; Cetrimonium Compounds; Fatty Acids, Monounsaturated; Lipid Bilayers; Nuclear Magnetic Resonance, Biomolecular; Oligodeoxyribonucleotides; Phosphatidylcholines; Phosphatidylethanolamines; Phosphorus; Poly A; Quaternary Ammonium Compounds; Spectrophotometry, Ultraviolet; Structure-Activity Relationship; Thionucleotides

2000
Fourier transform infrared spectroscopy as a probe for the study of the hydration of lipid self-assemblies. II. Water binding versus phase transitions.
    Biospectroscopy, 1998, Volume: 4, Issue:4

    The gradual hydration of phospholipid films can be effectively probed by Fourier transform infrared (FTIR) spectroscopy (cf. part I of this series). The hydration-induced changes observed for lipid IR-absorption bands are probably composed of contributions arising from the effects of both the direct binding of water molecules and the thereby caused conformational changes and phase transitions in the lipid molecules and assemblies, respectively. In this article, an attempt is made to attribute some of the more indicative spectroscopic results to these molecular and supermolecular processes with a view to separating their individual contributions to the relevant spectroscopic data. This is done by considering a series of suitable PLs consisting of the palmitoyl and oleoyl lecithins, DPPC, DOPC, POPC, and OPPC, and one cephalin, DOPE. This choice of PCs and DOPE means that at room temperature and different degrees of hydration, several phase states including lamellar gel and liquid crystalline as well as certain nonlamellar phases are covered. The separation of the water-binding and phase-transition contributions to the FTIR-spectroscopic data, we believe, is clearly demonstrated by interpreting the hydration-dependent wavenumber shifts of the nu C=O band of the PCs. Carbonyl groups are affected to a more significant degree for lipids arrayed in the L alpha phase than in the gel phase. A number of spectral features reveal the lyotropically triggered chain-melting transition as well as other structural rearrangements of PCs. This is discussed in detail and demonstrates the excellent sensitivity of the FTIR methodology for the study of such systems.

    Topics: 1,2-Dipalmitoylphosphatidylcholine; Kinetics; Phosphatidylcholines; Phosphatidylethanolamines; Spectroscopy, Fourier Transform Infrared; Structure-Activity Relationship; Thermodynamics; Water

1998
A carbon-13 nuclear magnetic resonance spectroscopic study of inter-proton pair order parameters: a new approach to study order and dynamics in phospholipid membrane systems.
    Biophysical journal, 1998, Volume: 75, Issue:3

    We report a simple new nuclear magnetic resonance (NMR) spectroscopic method to investigate order and dynamics in phospholipids in which inter-proton pair order parameters are derived by using high resolution 13C cross-polarization/magic angle spinning (CP/MAS) NMR combined with 1H dipolar echo preparation. The resulting two-dimensional NMR spectra permit determination of the motionally averaged interpair second moment for protons attached to each resolved 13C site, from which the corresponding interpair order parameters can be deducted. A spin-lock mixing pulse before cross-polarization enables the detection of spin diffusion amongst the different regions of the lipid molecules. The method was applied to a variety of model membrane systems, including 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/sterol and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/sterol model membranes. The results agree well with previous studies using specifically deuterium labeled or predeuterated phospholipid molecules. It was also found that efficient spin diffusion takes place within the phospholipid acyl chains, and between the glycerol backbone and choline headgroup of these molecules. The experiment was also applied to biosynthetically 13C-labeled ergosterol incorporated into phosphatidylcholine bilayers. These results indicate highly restricted motions of both the sterol nucleus and the aliphatic side chain, and efficient spin exchange between these structurally dissimilar regions of the sterol molecule. Finally, studies were carried out in the lamellar liquid crystalline (L alpha) and inverted hexagonal (HII) phases of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). These results indicated that phosphatidylethanolamine lamellar phases are more ordered than the equivalent phases of phosphatidylcholines. In the HII (inverted hexagonal) phase, despite the increased translational freedom, there is highly constrained packing of the lipid molecules, particularly in the acyl chain region.

    Topics: Biophysical Phenomena; Biophysics; Carbon Isotopes; Cholesterol; Dimyristoylphosphatidylcholine; Ergosterol; Lanosterol; Lipid Bilayers; Magnetic Resonance Spectroscopy; Membrane Lipids; Phosphatidylcholines; Phosphatidylethanolamines; Phospholipids; Protons; Thermodynamics

1998
Investigating synthetic P-regions from voltage-gated sodium channel at the conformational and functional levels.
    European biophysics journal : EBJ, 1997, Volume: 25, Issue:4

    Four peptides mimicking the four P-regions of the electric eel sodium channel were chemically synthesized to characterize their secondary structure and their contribution to the channel selectivity. Circular dichroism spectra of these peptides in trifluoroethanol demonstrate an important beta-sheet conformational component. This beta-sheet content is much enhanced upon interaction with phosphatidylcholine small unilamellar vesicles. As expected (and except for P of domain III), no significant voltage-dependence is revealed in either macroscopic or single-channel conductance experiments. The concentrations-dependences of macroscopic conductances suggest that tetramers are the membrane conducting aggregates. In asymmetric ionic conditions, these channels made up of P-peptides were mostly specific for sodium over chloride whilst caesium was largely excluded. Single-channel conductance analysis discloses a moderate selectivity for sodium over potassium for PI and PII. This selectivity is larger with PIII but inverted for PIV. Finally, a control random peptide of the same length and with a comparable mean hydrophibicity was also tested. Its conformation in TFE is mainly unordered and no activity was detected in planar lipid bilayers. The data suggest that the presumed selectivity filter may not assume a circular symmetry and that molecular recognition between the different P-regions has to be taken into account.

    Topics: Amino Acid Sequence; Animals; Chromatography, High Pressure Liquid; Circular Dichroism; Electrophorus; Ion Channel Gating; Lipid Bilayers; Membrane Potentials; Molecular Sequence Data; Peptide Fragments; Phosphatidylcholines; Phosphatidylethanolamines; Protein Conformation; Protein Structure, Secondary; Sodium Channels

1997
A 1H nuclear magnetic resonance method for investigating the phospholipase D-catalyzed hydrolysis of phosphatidylcholine in liposomes.
    Analytical biochemistry, 1996, Aug-15, Volume: 240, Issue:1

    Liposomes with mean diameters between 45 and 73 nm have been prepared from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) at pH 8.0; and a new methodology is described which allows one to quantitatively follow the phospholipase D-catalyzed transformation of POPC to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidic acid and free choline. The method does not require a special sample preparation; it takes advantage of the fact that the chemical shift of the protons of the three methyl groups in free choline differs from the chemical shift of the choline methyl protons in POPC. Measurements have been carried out under different experimental configurations and they have been paralleled by electron and light microscopy studies, partially using a fluorescently labeled phospholipid. It has been found that for a fixed concentration of the Ca2+-independent phospholipase D from Streptomyces sp. AA 586 the initial velocity and the reaction yields depend on the size of the vesicles. The smaller the vesicles, the higher the yields and the lower the initial rates. Furthermore, the size of the liposomes does not change during hydrolysis of the external POPC layer.

    Topics: Choline; Fluorescent Dyes; Hydrolysis; Kinetics; Liposomes; Magnetic Resonance Spectroscopy; Microscopy, Electron; Phosphatidic Acids; Phosphatidylcholines; Phosphatidylethanolamines; Phospholipase D; Scattering, Radiation; Streptomyces; Time Factors; Xanthenes

1996
Antimicrobial peptide magainin I from Xenopus skin forms anion-permeable channels in planar lipid bilayers.
    Biophysical journal, 1989, Volume: 56, Issue:5

    The ionophore properties of magainin I, an antimicrobial and amphipathic peptide from the skin of Xenopus, were investigated in planar lipid bilayers. Circular dichroism studies, performed comparatively with alamethicin, in small or large unilamellar phospholipidic vesicles, point to a smaller proportion of alpha-helical conformation in membranes. A weakly voltage-dependent macroscopic conductance which is anion-selective is developed when using large aqueous peptide concentration with lipid bilayer under high voltages. Single-channel experiments revealed two main conductance levels occurring independently in separate trials. Pre-aggregates lying on the membrane surface at rest and drawn into the bilayer upon voltage application are assumed to account for this behaviour contrasting with the classical multistates displayed by alamethicin.

    Topics: Amino Acid Sequence; Animals; Anti-Infective Agents; Antimicrobial Cationic Peptides; Circular Dichroism; Electric Conductivity; Ion Channels; Lipid Bilayers; Models, Biological; Molecular Sequence Data; Peptides; Phosphatidylcholines; Phosphatidylethanolamines; Protein Conformation; Skin; Xenopus laevis; Xenopus Proteins

1989