1,2-cyclohexanedione has been researched along with diacetyl in 23 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 18 (78.26) | 18.7374 |
1990's | 3 (13.04) | 18.2507 |
2000's | 2 (8.70) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Beroza, P; Damodaran, K; Danks, MK; Edwards, CC; Hyatt, JL; Morton, CL; Obenauer, JC; Potter, PM; Wadkins, RM; Wei, X; Wierdl, M; Yoon, KJ | 1 |
Neujahr, HY; Sejlitz, T | 1 |
Cheng, KC; Nowak, T | 1 |
Koyama, T; Ogura, K; Yoshida, I | 1 |
Little, C; Willassen, NP | 1 |
Dekker, EE; Epperly, BR | 1 |
Palmieri, F; Prezioso, G; Stipani, I; Zaki, L; Zara, V | 1 |
Bhaduri, A; Mukherji, S | 1 |
Brindley, DN; Butterwith, SC; Hopewell, R | 1 |
Ivanov, KK; Kazdobina, IS; Kolesnikova, VA; Shibaeva, IV; Ugriumova, GA | 1 |
Berrocal, F; Carreras, J | 1 |
Bieth, JG; Davril, M; Duportail, G; Han, KK; Jung, ML; Lohez, M | 1 |
Gracy, RW; Lu, HS; Talent, JM | 1 |
Fox, PF; Shalabi, SI | 1 |
El Kebbaj, MS; Gaudemer, Y; Latruffe, N; Moussard, C | 1 |
El Kebbaj, MS; Gaudemer, Y; Latruffe, N | 1 |
Jiang, ZY; Thorpe, C | 1 |
Franks, DJ; Ngo, TT; Tunnicliff, G | 1 |
Patthy, L; Thész, J | 1 |
el-Kebbaj, MS; Gaudemer, Y; Latruffe, N | 1 |
Rodríguez Mellado, JM; Ruiz Montoya, M | 1 |
Adak, S; Banerjee, RK; Mazumder, A | 1 |
Banerjee, A; Fitzpatrick, PF; Fleming, GS; Gadda, G | 1 |
23 other study(ies) available for 1,2-cyclohexanedione and diacetyl
Article | Year |
---|---|
Identification and characterization of novel benzil (diphenylethane-1,2-dione) analogues as inhibitors of mammalian carboxylesterases.
Topics: Acetylcholinesterase; Animals; Butyrylcholinesterase; Carboxylesterase; Carboxylic Ester Hydrolases; Cholinesterase Inhibitors; Databases, Factual; Humans; Intestines; Models, Molecular; Phenylglyoxal; Quantitative Structure-Activity Relationship; Rats; Structure-Activity Relationship; Umbelliferones | 2005 |
Arginyl residues in the NADPH-binding sites of phenol hydroxylase.
Topics: Arginine; Binding Sites; Cyclohexanones; Diacetyl; Fluorescence; Kinetics; Mixed Function Oxygenases; NADP; Phenylglyoxal | 1991 |
Arginine residues at the active site of avian liver phosphoenolpyruvate carboxykinase.
Topics: Animals; Arginine; Binding Sites; Carbon Dioxide; Chemical Phenomena; Chemistry; Chickens; Circular Dichroism; Cyclohexanones; Diacetyl; Electron Spin Resonance Spectroscopy; Inosine Diphosphate; Kinetics; Liver; Manganese; Phenylglyoxal; Phosphoenolpyruvate; Phosphoenolpyruvate Carboxykinase (GTP); Protein Conformation | 1989 |
Protection of hexaprenyl-diphosphate synthase of Micrococcus luteus B-P 26 against inactivation by sulphydryl reagents and arginine-specific reagents.
Topics: Aldehydes; Alkyl and Aryl Transferases; Arginine; Butanones; Chloromercuribenzoates; Cyclohexanes; Cyclohexanones; Diacetyl; Dimethylallyltranstransferase; Diphosphates; Enzyme Activation; Ethylmaleimide; Hemiterpenes; Iodoacetamide; Magnesium; Micrococcus; Organophosphorus Compounds; p-Chloromercuribenzoic Acid; Phenylglyoxal; Polyisoprenyl Phosphates; Sesquiterpenes; Sulfhydryl Reagents; Transferases | 1989 |
Effect of 2,3-butanedione on human myeloperoxidase.
Topics: Amino Acids; Butanones; Cyclohexanones; Diacetyl; Hemeproteins; Humans; Peroxidase; Phenylglyoxal | 1989 |
Inactivation of Escherichia coli L-threonine dehydrogenase by 2,3-butanedione. Evidence for a catalytically essential arginine residue.
Topics: Alcohol Oxidoreductases; Arginine; Binding Sites; Butanones; Catalysis; Cyclohexanones; Diacetyl; Escherichia coli; Kinetics; NAD; Pentanones; Phenylglyoxal | 1989 |
Inhibition of the mitochondrial tricarboxylate carrier by arginine-specific reagents.
Topics: Animals; Arginine; Binding Sites; Carrier Proteins; Citrates; Cyclohexanones; Diacetyl; Hydrogen-Ion Concentration; Liposomes; Membrane Proteins; Mitochondria, Liver; Phenylglyoxal; Protein Binding; Rats | 1986 |
UDP-glucose 4-epimerase from Saccharomyces fragilis. Presence of an essential arginine residue at the substrate-binding site of the enzyme.
Topics: Arginine; Binding Sites; Binding, Competitive; Carbohydrate Epimerases; Carbon Radioisotopes; Cyclohexanones; Diacetyl; Kinetics; Phenylglyoxal; Protein Binding; Saccharomyces; Spectrometry, Fluorescence; UDPglucose 4-Epimerase; Uracil Nucleotides | 1986 |
Partial purification and characterization of the soluble phosphatidate phosphohydrolase of rat liver.
Topics: Animals; Cations, Divalent; Chromatography, Gel; Chromatography, Ion Exchange; Cyclohexanones; Diacetyl; Female; Liver; Male; Phosphatidate Phosphatase; Phospholipids; Phosphoric Monoester Hydrolases; Rats; Sulfhydryl Reagents | 1984 |
[Role of arginine and histidine residues in the biological activity of botulinic neurotoxin A].
Topics: Animals; Arginine; Botulinum Toxins; Cyclohexanones; Diacetyl; Diethyl Pyrocarbonate; Epitopes; Histidine; Protein Conformation | 1983 |
Metabolism of glycerate-2,3-P2-III. Arginine-specific reagents inactivate the phosphoglycerate mutase, glycerate-2,3-P2 synthase and glycerate-2,3-P2 phosphatase activities of rabbit muscle phosphoglycerate mutase.
Topics: Animals; Arginine; Cyclohexanones; Diacetyl; Glyoxal; Hydroxylamine; Hydroxylamines; Muscles; Phenylglyoxal; Phosphoglycerate Mutase; Phosphoric Monoester Hydrolases; Phosphotransferases; Pyruvaldehyde; Rabbits | 1983 |
Arginine modification in elastase. Effect on catalytic activity and conformation of the calcium-binding site.
Topics: Animals; Arginine; Calcium; Cyclohexanones; Diacetyl; Hydroxylamine; Hydroxylamines; Kinetics; Pancreas; Pancreatic Elastase; Phenylglyoxal; Protein Conformation; Swine | 1984 |
Chemical modification of critical catalytic residues of lysine, arginine, and tryptophan in human glucose phosphate isomerase.
Topics: Affinity Labels; Arginine; Bromosuccinimide; Circular Dichroism; Cyclohexanones; Diacetyl; Female; Glucose-6-Phosphate Isomerase; Humans; Kinetics; Lysine; Molecular Weight; Placenta; Pregnancy; Protein Binding; Protein Conformation; Pyridoxal Phosphate; Tryptophan | 1981 |
Heat stability of milk: influence of modification of lysine and arginine on the heat stability-pH profile.
Topics: Acetic Anhydrides; Aldehydes; Animals; Arginine; Butanones; Cattle; Cyclohexanes; Cyclohexanones; Dansyl Compounds; Diacetyl; Glyoxal; Hot Temperature; Hydrogen-Ion Concentration; Lysine; Methylurea Compounds; Milk | 1982 |
Permeability of inner mitochondrial membrane to arginine reagents.
Topics: Animals; Arginine; Cyclohexanones; Diacetyl; Hydroxybutyrate Dehydrogenase; In Vitro Techniques; Intracellular Membranes; Membrane Proteins; Mitochondria; Permeability; Phenylglyoxal; Pyruvaldehyde; Rats; Submitochondrial Particles | 1982 |
Comparative titration of arginyl residues in purified D-beta-hydroxybutyrate apodehydrogenase and in the reconstituted phospholipid-enzyme complex.
Topics: Amino Acids; Animals; Apoenzymes; Arginine; Cyclohexanones; Diacetyl; Hydroxybutyrate Dehydrogenase; Kinetics; Membrane Lipids; Mitochondria; Mitochondria, Liver; Phenylglyoxal; Phospholipids; Rats; Submitochondrial Particles | 1982 |
Modification of an arginine residue in pig kidney general acyl-coenzyme A dehydrogenase by cyclohexane-1,2-dione.
Topics: Acyl Coenzyme A; Acyl-CoA Dehydrogenase; Acyl-CoA Dehydrogenases; Animals; Arginine; Binding Sites; Cyclohexanes; Cyclohexanones; Diacetyl; Fatty Acids; Kidney; Phenylglyoxal; Swine | 1982 |
Inactivation of adenylate cyclase by phenylglyoxal and other dicarbonyls. Evidence for existence of essential arginyl residues.
Topics: Adenylyl Cyclase Inhibitors; Aldehydes; Animals; Arginine; Binding Sites; Brain; Cyclohexanones; Diacetyl; Glyoxal; Male; Phenylglyoxal; Rats | 1980 |
Origin of the selectivity of alpha-dicarbonyl reagents for arginyl residues of anion-binding sites.
Topics: Anions; Arginine; Binding Sites; Cyclohexanones; Diacetyl; Fructose-Bisphosphate Aldolase; Indicators and Reagents; Ketones; Phenylglyoxal | 1980 |
Presence of an essential arginyl residue in D-beta-hydroxybutyrate dehydrogenase from mitochondrial inner membrane.
Topics: Animals; Arginine; Cyclohexanones; Diacetyl; Hydroxybutyrate Dehydrogenase; Intracellular Membranes; Kinetics; Mitochondria, Liver; Phenylglyoxal; Protein Binding; Rats | 1980 |
Correlations between chemical reactivity and mutagenic activity against S. typhimurium TA100 for alpha-dicarbonyl compounds as a proof of the mutagenic mechanism.
Topics: Aldehydes; Cyclohexanones; Diacetyl; DNA Damage; Dose-Response Relationship, Drug; Glyoxal; Guanine; Guanosine; Hexanones; Mutagenesis; Mutagenicity Tests; Mutagens; Phenylglyoxal; Pyruvaldehyde; Salmonella typhimurium; Structure-Activity Relationship; Thermodynamics | 1994 |
Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding.
Topics: Arginine; Binding Sites; Carbon Radioisotopes; Circular Dichroism; Cyclohexanones; Diacetyl; Enzyme Inhibitors; Heme; Horseradish Peroxidase; Kinetics; Models, Structural; Phenylglyoxal; Protein Structure, Secondary; Spectrophotometry; Tetranitromethane; Thermodynamics; Tyrosine | 1996 |
Evidence for an essential arginine in the flavoprotein nitroalkane oxidase.
Topics: Arginine; Binding, Competitive; Cyclohexanones; Diacetyl; Dioxygenases; Enzyme Inhibitors; Flavoproteins; Fusarium; Kinetics; Oxygenases; Pentanoic Acids; Phenylglyoxal; Substrate Specificity | 2001 |