1,2-bis(2-aminophenoxy)ethane n,n,n',n'-tetraacetic acid acetoxymethyl ester has been researched along with tram 34 in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (50.00) | 29.6817 |
2010's | 1 (50.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Dutta, AK; Esser, V; Feranchak, AP; Khimji, AK; Kresge, C; Parameswara, V; Rockey, DC; Sathe, M | 1 |
Maniak, PJ; O'Grady, SM; Palmer, ML; Peitzman, ER; Prakash, YS; Sieck, GC | 1 |
2 other study(ies) available for 1,2-bis(2-aminophenoxy)ethane n,n,n',n'-tetraacetic acid acetoxymethyl ester and tram 34
Article | Year |
---|---|
Identification and functional characterization of the intermediate-conductance Ca(2+)-activated K(+) channel (IK-1) in biliary epithelium.
Topics: Adenosine Triphosphate; Animals; Apamin; Barium; Benzimidazoles; Biliary Tract; Buffers; Cell Line, Tumor; Cell Membrane; Cells, Cultured; Chelating Agents; Clotrimazole; Egtazic Acid; Electrophysiological Phenomena; Epithelial Cells; Gene Expression; Humans; Inositol 1,4,5-Trisphosphate Receptors; Intermediate-Conductance Calcium-Activated Potassium Channels; Models, Biological; Patch-Clamp Techniques; Purinergic P2 Receptor Antagonists; Pyrazoles; Rats; Signal Transduction; Suramin | 2009 |
K(Ca)3.1 channels facilitate K+ secretion or Na+ absorption depending on apical or basolateral P2Y receptor stimulation.
Topics: Absorption; Adenosine Triphosphate; Apamin; Calcium; Cells, Cultured; Charybdotoxin; Clotrimazole; Egtazic Acid; Epithelial Cells; Humans; Ion Transport; Mammary Glands, Human; Membrane Potentials; Peptides; Potassium; Potassium Channels, Calcium-Activated; Purinergic Agonists; Pyrazoles; Receptors, Purinergic P2Y; Signal Transduction; Sodium; Uridine Triphosphate | 2011 |