1,2-bis(2-aminophenoxy)ethane n,n,n',n'-tetraacetic acid acetoxymethyl ester and s-nitro-n-acetylpenicillamine

1,2-bis(2-aminophenoxy)ethane n,n,n',n'-tetraacetic acid acetoxymethyl ester has been researched along with s-nitro-n-acetylpenicillamine in 3 studies

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's2 (66.67)18.2507
2000's1 (33.33)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Hansford, R; Khan, L; Lakatta, EG; Longo, DL; Sollott, SJ; Srivastava, RK1
Maruyama, I; Nakata, M; Uto, N; Yada, T1
Iida, H; Inoue, N; Ishida, H; Ishikawa, Y; Yuan, Z1

Other Studies

3 other study(ies) available for 1,2-bis(2-aminophenoxy)ethane n,n,n',n'-tetraacetic acid acetoxymethyl ester and s-nitro-n-acetylpenicillamine

ArticleYear
Bcl-2 and Bcl-X(L) block thapsigargin-induced nitric oxide generation, c-Jun NH(2)-terminal kinase activity, and apoptosis.
    Molecular and cellular biology, 1999, Volume: 19, Issue:8

    Topics: Apoptosis; bcl-X Protein; Calcium Signaling; Calcium-Calmodulin-Dependent Protein Kinases; Calcium-Transporting ATPases; Caspase 3; Caspase Inhibitors; Caspases; Cysteine Proteinase Inhibitors; Egtazic Acid; Enzyme Activation; Humans; JNK Mitogen-Activated Protein Kinases; Jurkat Cells; Mitochondria; Mitogen-Activated Protein Kinases; Neoplasm Proteins; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Oligopeptides; Penicillamine; Proto-Oncogene Proteins c-bcl-2; Thapsigargin

1999
Nitric oxide induces apoptosis via Ca2+-dependent processes in the pancreatic beta-cell line MIN6.
    Cell structure and function, 1999, Volume: 24, Issue:6

    Topics: Animals; Apoptosis; Calcium; Cell Survival; Chelating Agents; Diabetes Mellitus, Type 1; Egtazic Acid; Insulinoma; Islets of Langerhans; Mice; Nitric Oxide; Nitric Oxide Donors; Pancreas; Pancreatic Neoplasms; Penicillamine; Tumor Cells, Cultured

1999
Effect of SNI-2011 on amylase secretion from parotid tissue in rats and in neuronal nitric oxide synthase knockout mice.
    European journal of pharmacology, 2003, Mar-19, Volume: 464, Issue:2-3

    Topics: Alkaloids; Amylases; Animals; Azepines; Benzoates; Benzylamines; Calcium; Calcium Channel Blockers; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calcium-Calmodulin-Dependent Protein Kinases; Carbachol; Carbazoles; Chelating Agents; Cyclic GMP-Dependent Protein Kinases; Dose-Response Relationship, Drug; Egtazic Acid; Enzyme Activation; Enzyme Inhibitors; Estrenes; Gallic Acid; Genotype; Guanylate Cyclase; Imidazoles; In Vitro Techniques; Indoles; Male; Mice; Mice, Knockout; Molsidomine; Muscarinic Agonists; Myosin-Light-Chain Kinase; NG-Nitroarginine Methyl Ester; Nitric Oxide Donors; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Oxadiazoles; Parotid Gland; Penicillamine; Phosphodiesterase Inhibitors; Pilocarpine; Protein Kinase Inhibitors; Pyrroles; Pyrrolidinones; Quinoxalines; Quinuclidines; Rats; Rats, Wistar; Sulfonamides; Thiophenes; Type C Phospholipases

2003