1-2-3-4-6-pentakis-O-galloyl-beta-D-glucose and Geraniin

1-2-3-4-6-pentakis-O-galloyl-beta-D-glucose has been researched along with Geraniin* in 2 studies

Other Studies

2 other study(ies) available for 1-2-3-4-6-pentakis-O-galloyl-beta-D-glucose and Geraniin

ArticleYear
Accumulation of hydrolyzable tannins by Aleurites fordii callus culture.
    Planta medica, 2002, Volume: 68, Issue:12

    A callus culture of Aleurites fordii Hemsley (Euphorbiaceae) producing five galloylglucoses and an ellagitannin, geraniin, was established. The production of pentagalloylglucose was remarkably enhanced under light irradiation compared with that in the dark. Cell growth and tannin production were also greatly affected by changing the concentrations and composition of nitrogen sources.

    Topics: Aleurites; Chromatography, High Pressure Liquid; Culture Techniques; Glucosides; Hydrolyzable Tannins; Light; Molecular Structure; Plant Extracts; Plant Leaves; Tannins

2002
Suppression of lipopolysaccharide-induced nuclear factor-kappaB activity by theaflavin-3,3'-digallate from black tea and other polyphenols through down-regulation of IkappaB kinase activity in macrophages.
    Biochemical pharmacology, 2000, Feb-15, Volume: 59, Issue:4

    We investigated the inhibition of IkappaB kinase (IKK) activity in lipopolysaccharide (LPS)-activated murine macrophages (RAW 264.7 cell line) by various polyphenols including (-)-epigallocatechin-3-gallate, theaflavin, a mixture of theaflavin-3 gallate and theaflavin-3'-gallate, theaflavin-3,3'-digallate (TF-3), pyrocyanidin B-3, casuarinin, geraniin, and penta-O-galloyl-beta-D-glucose (5GG). TF-3 inhibited IKK activity in activated macrophages more strongly than did the other polyphenols. TF-3 strongly inhibited both IKK1 and IKK2 activity and prevented the degradation of IkappaBalpha and IkappaBbeta in activated macrophage cells. The results suggested that the inhibition of IKK activity by TF-3 could occur by a direct effect on IKKs or on upstream events in the signal transduction pathway. Furthermore, geraniin, 5GG, and TF-3 all blocked phosphorylation of IKB from the cytosolic fraction, inhibited nuclear factor-kappaB (NFkappaB) activity, and inhibited increases in inducible nitric oxide synthase levels in activated macrophages. These results suggest that TF-3 may exert its anti-inflammatory and cancer chemopreventive actions by suppressing the activation of NFkappaB through inhibition of IKK activity.

    Topics: Animals; Antioxidants; Biflavonoids; Catechin; Cells, Cultured; Down-Regulation; Enzyme Inhibitors; Flavonoids; Gallic Acid; Gene Expression; Glucosides; Hydrolyzable Tannins; I-kappa B Kinase; Lipopolysaccharides; Macrophages; Mice; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Phenols; Phosphorylation; Polymers; Polyphenols; Protein Serine-Threonine Kinases; Tannins; Tea

2000