1-1-diphenyl-2-picrylhydrazyl has been researched along with hydroquinone* in 2 studies
2 other study(ies) available for 1-1-diphenyl-2-picrylhydrazyl and hydroquinone
Article | Year |
---|---|
Antimicrobial and antiradical activity of extracts obtained from leaves of three species of the genus pyrus.
In this study, extracts were obtained from leaves of Pyrus communis L., Pyrus elaeagrifolia Pall., and Pyrus pyrifolia (Bum.) Nak. These extracts were tested for antiradical and antibacterial activity, as well as for the amount of total phenolic compounds, hydroquinone and arbutin. The antiradical activity was measured using 2,2-diphenyl-1-picrylhydrazyl radical and antibacterial activity with the disk diffusion method. The amount of phenolic compounds was determined using Folin Ciocalteu's phenol reagent, but the amount of hydroquinone and arbutin was measured with high performance liquid chromatography. The strongest antiradical activity was observed for ethyl acetate extract from leaves of P. communis L., and the lowest for the poorly soluble fraction (precipitate) from leaves of P. elaeagrifolia Pall. The highest number of antiradical units per gram of raw materials was noted for leaves of P. communis. The strongest antibacterial activity was measured for ethyl acetate extracts. The calculation of Spearman rank correlation coefficients indicated the existence of a positive correlation between contents of hydroquinone in extracts and their antibacterial activity for almost all investigated bacterial strains. The strains of fungi such as Candida albicans and Saccharomyces cerevisiae were completely resistant to the action of extracts. Topics: Acetates; Anti-Bacterial Agents; Antioxidants; Arbutin; Bacillus subtilis; Biphenyl Compounds; Disk Diffusion Antimicrobial Tests; Escherichia coli; Helicobacter pylori; Hydroquinones; Picrates; Plant Extracts; Plant Leaves; Pseudomonas aeruginosa; Pyrus; Solvents; Species Specificity; Staphylococcus aureus | 2014 |
Reassessment of antioxidant activity of arbutin: multifaceted evaluation using five antioxidant assay systems.
Arbutin, a practically used skin-lightening agent, has been reported to possess a weak antioxidant activity compared to that of its precursor, hydroquinone. However, its antioxidant activity has not been systematically evaluated. Hence, this study reassessed its activity using five assay systems. Assays were first performed using model radicals, DPPH radical and ABTS(*+). Arbutin showed weak DPPH radical-scavenging activity compared to that of hydroquinone, but showed strong ABTS(*+)-scavenging activity. Its activity by ORAC assay was then evaluated using a physiologically relevant peroxyl radical. Arbutin exerted weak but long-lasting radical-scavenging activity and showed totally the same antioxidant activity as that of hydroquinone. Finally, it was shown that, in two cell-based antioxidant assays using erythrocytes and skin fibroblasts, arbutin exerted strong antioxidant activity comparable or even superior to that of hydroquinone. These findings indicate that the antioxidant activity of arbutin may have been under-estimated and suggest that it acts as a potent antioxidant in the skin. Topics: Animals; Antioxidants; Arbutin; Benzothiazoles; Biphenyl Compounds; Cell Survival; Cells, Cultured; Dose-Response Relationship, Drug; Erythrocytes; Fibroblasts; Hemolysis; Humans; Hydroquinones; Oxidative Stress; Picrates; Sheep; Structure-Activity Relationship; Sulfonic Acids; Thiazoles; Time Factors | 2010 |