1-1-diethyl-2-hydroxy-2-nitrosohydrazine has been researched along with isosorbide-5-mononitrate* in 2 studies
2 other study(ies) available for 1-1-diethyl-2-hydroxy-2-nitrosohydrazine and isosorbide-5-mononitrate
Article | Year |
---|---|
Calcium-activated potassium channels and nitrate-induced vasodilation in human coronary arteries.
In some but not all arterial beds, smooth muscle cell calcium-activated K+ channels (KCa channels) play a central role in the mediation of the vasodilator response to nitric oxide (NO) and other nitrates. We investigated the effect of nitrates on KCa channels in the relaxation of human coronary arteries by means of isometric contraction experiments in arterial rings. We also measured whole-cell currents in freshly isolated human coronary artery vascular smooth muscle cells via the patch-clamp technique. Sodium nitroprusside, diethylamine-nitric oxide complex sodium salt and isosorbide mononitratre completely relaxed rings preconstricted with 5 microM serotonin and produced dose-dependent relaxations of 5 microM serotonin-preconstricted human rings. The relaxations were inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-oxyl 3-oxide (10 microM), which neutralizes nitric oxide. The KCa channel blockers iberiotoxin (100 nM) and tetraethylammonium ions (1 mM) significantly inhibited SNP-induced relaxations of human coronary arteries. Moreover, in the patch-clamp experiments, SNP (1 microM) stimulated KCa currents and spontaneous transient outward K+ currents carried by Ca spark activated KCa channels. The SNP-induced (1 microM) KCa current was strongly inhibited by iberiotoxin (100 nM). These data show that activation of KCa channels in smooth muscle cells contributes to the vasodilating actions of nitrates and nitric oxide in human coronary arteries. This finding may have unique clinical significance for the development of antianginal and antihypertensive drugs that selectively target K+ channels and Ca sparks. Topics: Coronary Vessels; Heart; Humans; Hydrazines; Isosorbide Dinitrate; Mutagens; Myocardial Contraction; Nitrates; Nitrogen Oxides; Nitroprusside; Potassium Channels; Vasodilation; Vasodilator Agents | 1998 |
Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes.
Whether organic nitrates are bioactivated to NO in cardiac muscle cells and may thus directly affect cardiac contractile function has remained an open question. Therefore, we determined the effects of the organic nitrates glyceryl trinitrate (100 mumol/L), pentaerythritol tetranitrate (10 mumol/L), and isosorbide-5-mononitrate on electrically stimulated contractile response (CR) and cAMP and cGMP content of isolated adult rat ventricular cardiomyocytes compared with different concentrations of the spontaneous NO donors S-nitroso-N-acetyl-d,1-penicillamine (SNAP) and 2,2-diethyl-1-hydroxy-1-nitroso-hydrazine (DEA/NO). A high concentration of spontaneous NO donors (100 mumol/L caused a large increase in cGMP content that was accompanied by a decrease in CR to 73.8 +/- 6.7% (SNAP) and 80.9 +/- 6.1% (DEA/NO) of the control values. Inhibition of cGMP-dependent protein kinase by 10 mumol/L KT 5822 converted this effect into a pronounced improvement of CR (163.5 +/- 14.0%) By contrast, the organic nitrates caused a small but significant increase in cGMP, which was accompanied by an increase in cAMP and CR identical to that induced by 10 nmol/L isoprenaline (141.6 +/- 6.4%) A similar effect was observed with a low concentration (1 mumol/L of SNAP and DEA/NO. All increases in CR induce by nitrates were abolished after inhibition of cAMP-dependent protein kinase by Rp-cAMPS (10 mumol/L). The positive contractile effect of isoprenaline was enhanced by 1 mumol/L SNAP. This effect was also demonstrated in isolated rat papillary muscles. These results indicate that in cardiac muscle (1) organic nitrate are bioactivated to NO; (2) this results in a moderate increase in cGMP, which causes an improved CR by increasing cAMP and activating cAMP-dependent protein kinase; and (3) a large increase in cGMP, produced by high doses of NO donors, reduces CR because of the activation of CGMP-dependent protein kinase. Topics: Animals; Cells, Cultured; Cyclic GMP; Electric Stimulation; Heart Ventricles; Hydrazines; Isosorbide Dinitrate; Male; Myocardial Contraction; Nitrogen Oxides; Nitroglycerin; Penicillamine; Pentaerythritol Tetranitrate; Rats; Rats, Wistar; S-Nitroso-N-Acetylpenicillamine; Vasodilator Agents | 1996 |