1-1-diethyl-2-hydroxy-2-nitrosohydrazine and 1-3-dipropyl-8-cyclopentylxanthine

1-1-diethyl-2-hydroxy-2-nitrosohydrazine has been researched along with 1-3-dipropyl-8-cyclopentylxanthine* in 2 studies

Other Studies

2 other study(ies) available for 1-1-diethyl-2-hydroxy-2-nitrosohydrazine and 1-3-dipropyl-8-cyclopentylxanthine

ArticleYear
Nitric oxide-induced adenosine inhibition of hippocampal synaptic transmission depends on adenosine kinase inhibition and is cyclic GMP independent.
    The European journal of neuroscience, 2006, Volume: 24, Issue:9

    Adenosine is an important inhibitory neuromodulator that regulates neuronal excitability. Several studies have shown that nitric oxide induces release of adenosine. Here we investigated the mechanism of this release. We studied the effects of nitric oxide on evoked field excitatory postsynaptic potentials (fEPSPs) recorded in the CA1 area of rat hippocampal slices. The nitric oxide donor 1,1-diethyl-2-hydroxy-2-nitroso-hydrazine sodium (DEA/NO; 100 microm) depressed the fEPSP by 77.6 +/- 4.1%. This effect was abolished by the adenosine A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 400 nm), indicating that the nitric oxide effect was mediated by adenosine accumulation. The DEA/NO effect was unaltered by the 5'-ectonucleotidase inhibitor alpha,beta-methylene-adenosine 5'-diphosphate (AMP-CP; 100 microm), indicating that extracellular adenosine did not derive from ATP or cAMP release. The guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazole[4,3-a]quinoxaline-1-one (ODQ; 5 microm) did not affect nitric oxide depression of the fEPSPs, indicating that nitric oxide-mediated adenosine release was not mediated through a cGMP signaling cascade. This conclusion was confirmed by the observation that 8-(4-chlorophenylthio)-guanosine-3',5'-cyclic monophosphate (8-pCPT-cGMP; 1 mm) reversibly depressed the fEPSP by 24.9 +/- 4.5%, but this effect was not blocked by adenosine antagonists. Adenosine kinase inhibitor 5-iodotubercidin (ITU; 7 microm) occluded the nitric oxide effects by 74%, suggesting that inhibition of adenosine kinase activity contributes to adenosine release. In conclusion, exogenous nitric oxide evokes adenosine release by a cGMP-independent pathway. Intracellular cGMP elevation partially inhibits the fEPSP but not through adenosine release. Although a direct block of adenosine kinase by nitric oxide can not be excluded, the depression of adenosine kinase activity may be due to inhibition by its own substrate adenosine.

    Topics: Adenosine; Adenosine Kinase; Animals; Cyclic GMP; Enzyme Inhibitors; Excitatory Postsynaptic Potentials; Hippocampus; Hydrazines; Male; Nitric Oxide; Organ Culture Techniques; Oxadiazoles; Quinoxalines; Rats; Rats, Sprague-Dawley; Synaptic Transmission; Thionucleotides; Xanthines

2006
Effects of nitric oxide release in an area of the chick forebrain which is essential for early learning.
    Brain research. Developmental brain research, 2000, May-11, Volume: 121, Issue:1

    Extracellular recording techniques were used to study the effects of the nitric oxide releasing agents diethylamine-NO (DEA-NO) and S-nitroso-N-acetyl-penicillamine (SNAP) on synaptic transmission in the intermediate and medial part of the hyperstriatum ventrale (IMHV), a part of the domestic chick forebrain that is essential for some forms of early learning. The field response evoked by local electrical stimulation was recorded in the IMHV in an in vitro slice preparation. DEA-NO (100-200 mgr) significantly depressed the field response in a concentration dependent and reversible manner. However, the depression produced by perfusion with 400 mgr DEA-NO, was not reversed following washout of the drug. With 400 mgr DEA-NO, NO reaches a maximum concentration of 10 mgr at 2 min of perfusion, and then declines slowly. SNAP (400 mgr) produced an effect similar to 400 mgr DEA-NO. Neither the immediate nor the longer-term depressive effect of NO is mediated by activation of guanylyl cyclase because in the presence of both low and high doses of ODQ, a potent and selective inhibitor of NO-stimulated guanylyl cyclase, NO produced the same depression of the field response. There is evidence however that the IMHV possesses c-GMP responsive elements since direct perfusion of 8-Br-cGMP (1 mM) produced a long-term but not an immediate depression. The long-term depression produced by 400 mgr DEA-NO was eliminated in the presence of either a selective adenosine A(1) receptor antagonist or an ADP-ribosyltransferase inhibitor. It was also possible to prevent the long-term effect in the presence of tetraethyl ammonium a K(+)-channel blocker. These results suggest that the NO may be acting presynaptically in a synergistic fashion with the adenosine A(1) receptor to depress transmitter release.

    Topics: Animals; Chickens; Conditioning, Psychological; Cyclic GMP; Evoked Potentials; Guanylate Cyclase; Hydrazines; Memory; Neuronal Plasticity; Neurons; Nitric Oxide; Nitric Oxide Donors; Nitrogen Oxides; Penicillamine; Poly(ADP-ribose) Polymerases; Potassium Channels; Prosencephalon; Receptors, Adrenergic, alpha-1; Synapses; Synaptic Transmission; Tetraethylammonium; Xanthines

2000