1-(3-sulfonatopropyl)-4-(beta)(2-(di-n-butylamino)-6-naphthylvinyl)pyridinium-betaine and indo-1

1-(3-sulfonatopropyl)-4-(beta)(2-(di-n-butylamino)-6-naphthylvinyl)pyridinium-betaine has been researched along with indo-1* in 2 studies

Other Studies

2 other study(ies) available for 1-(3-sulfonatopropyl)-4-(beta)(2-(di-n-butylamino)-6-naphthylvinyl)pyridinium-betaine and indo-1

ArticleYear
Multi-photon microscopy of cell types in the viable taste disk of the frog.
    Cell and tissue research, 2003, Volume: 313, Issue:1

    The morphology of viable taste disks of the frog was explored with multi-photon microscopy. In order to identify single sensory or supporting cells within the tissue, we searched for fluorescent dyes that stained subsets of the cell population or possibly cell types. Some cell types indeed stained preferentially with certain fluorescent dyes. A subset of glia-like cells (type Ic) stained with BCECF, a H+-sensitive dye, and indo-1, a Ca2+-sensitive dye, both presented in the membrane-permeant ester form. BCECF-ester also stained the dendrites of type III receptor cells, but indo-1 ester did not. Receptor cells of type II stained with MQAE, a positively charged Cl- -sensitive dye. A subset of type II cells accumulated amiloride, a positively charged fluorescent diuretic. Certain supporting cells, i.e., wing cells (type Ib) and glia-like cells (type Ic), were labeled by negatively charged dyes, e.g., calcium green-1 dextran. Mucus cells (type Ia) were stained with only two of the 19 dyes examined, and Merkel-like basal cells (type IV) were stained only with a membrane-labeling voltage-sensitive dye, presumably by endocytosis. No dye was found which would stain all types of cells or all receptor cells. This finding reveals a potential problem for future functional imaging aiming at population responses, as the responses of unstained cells then would remain unobserved. Specificity of dyes with respect to cell types was sufficient to identify supporting cells and receptor cells. Cell shape could then be reconstructed, using optical slicing and rendering techniques. Thus populations of dye-loaded elongated cells, especially types Ic, II and III, could for the first time be visualized in three dimensions.

    Topics: Acridines; Amiloride; Animals; Cell Membrane; Colforsin; Dextrans; Diffusion; Fluoresceins; Fluorescent Dyes; Fura-2; Imaging, Three-Dimensional; Indoles; Iontophoresis; Microscopy, Confocal; Microscopy, Fluorescence, Multiphoton; Organic Chemicals; Pyridinium Compounds; Quaternary Ammonium Compounds; Quinolinium Compounds; Rana esculenta; Rana ridibunda; Staining and Labeling; Taste Buds

2003
Mapping action potentials and calcium transients simultaneously from the intact heart.
    American journal of physiology. Heart and circulatory physiology, 2001, Volume: 280, Issue:5

    Intracellular calcium handling plays an important role in cardiac electrophysiology. Using two fluorescent indicators, we developed an optical mapping system that is capable of measuring calcium transients and action potentials at 256 recording sites simultaneously from the intact guinea pig heart. On the basis of in vitro measurements of dye excitation and emission spectra, excitation and emission filters at 515 +/- 5 and >695 nm, respectively, were used to measure action potentials with di-4-ANEPPS, and excitation and emission filters at 365 +/- 25 and 485 +/- 5 nm, respectively, were used to measure calcium transients with indo 1. The percent error due to spectral overlap was small when action potentials were measured (1.7 +/- 1.0%, n = 3) and negligible when calcium transients were measured (0%, n = 3). Recordings of calcium transients, action potentials, and isochrone maps of depolarization time and the time of calcium transient onset indicated negligible error due to fluorescence emission overlap. These data demonstrate that the error due to spectral overlap of indo 1 and di-4-ANEPPS is sufficiently small, such that optical mapping techniques can be used to measure calcium transients and action potentials simultaneously in the intact heart.

    Topics: Action Potentials; Animals; Calcium; Electrophysiology; Fluorescent Dyes; Guinea Pigs; Heart; Image Processing, Computer-Assisted; In Vitro Techniques; Indoles; Optics and Photonics; Pyridinium Compounds; Reproducibility of Results

2001