1-(1-glycero)dodeca-1-3-5-7-9-pentaene has been researched along with caffeic-acid-phenethyl-ester* in 1 studies
1 other study(ies) available for 1-(1-glycero)dodeca-1-3-5-7-9-pentaene and caffeic-acid-phenethyl-ester
Article | Year |
---|---|
Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex.
Colorectal cancer is a major cause of cancer deaths in Western countries, but epidemiological data suggest that dietary modification might reduce these by as much as 90%. Cyclo-oxygenase 2 (COX2), an inducible isoform of prostaglandin H synthase, which mediates prostaglandin synthesis during inflammation, and which is selectively overexpressed in colon tumours, is thought to play an important role in colon carcinogenesis. Curcumin, a constituent of turmeric, possesses potent anti-inflammatory activity and prevents colon cancer in animal models. However, its mechanism of action is not fully understood. We found that in human colon epithelial cells, curcumin inhibits COX2 induction by the colon tumour promoters, tumour necrosis factor alpha or fecapentaene-12. Induction of COX2 by inflammatory cytokines or hypoxia-induced oxidative stress can be mediated by nuclear factor kappa B (NF-kappaB). Since curcumin inhibits NF-kappaB activation, we examined whether its chemopreventive activity is related to modulation of the signalling pathway which regulates the stability of the NF-kappaB-sequestering protein, IkappaB. Recently components of this pathway, NF-kappaB-inducing kinase and IkappaB kinases, IKKalpha and beta, which phosphorylate IkappaB to release NF-kappaB, have been characterised. Curcumin prevents phosphorylation of IkappaB by inhibiting the activity of the IKKs. This property, together with a long history of consumption without adverse health effects, makes curcumin an important candidate for consideration in colon cancer prevention. Topics: Antineoplastic Agents; Caffeic Acids; Colonic Neoplasms; Curcumin; Cyclooxygenase 2; Dose-Response Relationship, Drug; Enzyme Inhibitors; Humans; I-kappa B Kinase; I-kappa B Proteins; Isoenzymes; Membrane Proteins; NF-kappa B; NF-kappaB-Inducing Kinase; Phenylethyl Alcohol; Polyenes; Prostaglandin-Endoperoxide Synthases; Protein Serine-Threonine Kinases; Signal Transduction; Tetradecanoylphorbol Acetate; Tumor Necrosis Factor-alpha | 1999 |