(all-e)-phytoene has been researched along with fucoxanthin* in 2 studies
2 other study(ies) available for (all-e)-phytoene and fucoxanthin
Article | Year |
---|---|
Effect of an Introduced Phytoene Synthase Gene Expression on Carotenoid Biosynthesis in the Marine Diatom Phaeodactylum tricornutum.
Carotenoids exert beneficial effects on human health through their excellent antioxidant activity. To increase carotenoid productivity in the marine Pennales Phaeodactylum tricornutum, we genetically engineered the phytoene synthase gene (psy) to improve expression because RNA-sequencing analysis has suggested that the expression level of psy is lower than other enzyme-encoding genes that are involved in the carotenoid biosynthetic pathway. We isolated psy from P. tricornutum, and this gene was fused with the enhanced green fluorescent protein gene to detect psy expression. After transformation using the microparticle bombardment technique, we obtained several P. tricornutum transformants and confirmed psy expression in their plastids. We investigated the amounts of PSY mRNA and carotenoids, such as fucoxanthin and β-carotene, at different growth phases. The introduction of psy increased the fucoxanthin content of a transformants by approximately 1.45-fold relative to the levels in the wild-type diatom. However, some transformants failed to show a significant increase in the carotenoid content relative to that of the wild-type diatom. We also found that the amount of PSY mRNA at log phase might contribute to the increase in carotenoids in the transformants at stationary phase. Topics: Aquatic Organisms; beta Carotene; Biosynthetic Pathways; Carotenoids; Diatoms; Gene Expression; Geranylgeranyl-Diphosphate Geranylgeranyltransferase; Plastids; RNA, Messenger; Xanthophylls | 2015 |
Biosynthesis of fucoxanthin and diadinoxanthin and function of initial pathway genes in Phaeodactylum tricornutum.
The biosynthesis pathway to diadinoxanthin and fucoxanthin was elucidated in Phaeodactylum tricornutum by a combined approach involving metabolite analysis identification of gene function. For the initial steps leading to β-carotene, putative genes were selected from the genomic database and the function of several of them identified by genetic pathway complementation in Escherichia coli. They included genes encoding a phytoene synthase, a phytoene desaturase, a ζ-carotene desaturase, and a lycopene β-cyclase. Intermediates of the pathway beyond β-carotene, present in trace amounts, were separated by TLC and identified as violaxanthin and neoxanthin in the enriched fraction. Neoxanthin is a branching point for the synthesis of both diadinoxanthin and fucoxanthin and the mechanisms for their formation were proposed. A single isomerization of one of the allenic double bounds in neoxanthin yields diadinoxanhin. Two reactions, hydroxylation at C8 in combination with a keto-enol tautomerization and acetylation of the 3'-HO group results in the formation of fucoxanthin. Topics: beta Carotene; Biosynthetic Pathways; Carotenoids; Diatoms; Escherichia coli; Genetic Complementation Test; Geranylgeranyl-Diphosphate Geranylgeranyltransferase; Intramolecular Lyases; Oxidoreductases; Phylogeny; Xanthophylls; zeta Carotene | 2012 |