Page last updated: 2024-08-16

(3r)-((2,3-dihydro-5-methyl-3-((4-morpholinyl)methyl)pyrrolo-(1,2,3-de)-1,4-benzoxazin-6-yl)(1-naphthalenyl))methanone and am 1241

(3r)-((2,3-dihydro-5-methyl-3-((4-morpholinyl)methyl)pyrrolo-(1,2,3-de)-1,4-benzoxazin-6-yl)(1-naphthalenyl))methanone has been researched along with am 1241 in 5 studies

Research

Studies (5)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's4 (80.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Chandran, P; Dart, MJ; Daza, AV; El-Kouhen, OF; Frost, JM; Garrison, TR; Grayson, GK; Hsieh, GC; Li, L; Meyer, MD; Miller, LN; Pai, M; Tietje, KR; Yao, BB; Zhu, CZ1
Chandran, P; Dart, MJ; Daza, AV; El-Kouhen, OF; Frost, JM; Garrison, TR; Grayson, GK; Hsieh, GC; Meyer, MD; Pai, M; Tietje, KR; Yao, BB; Zhu, CZ1
Brogi, S; Corelli, F; Di Marzo, V; Ligresti, A; Mugnaini, C; Pasquini, S; Tafi, A1
Huryn, DM; Resnick, LO; Wipf, P1
Buzard, DJ; Han, S; Jones, RM; Thatte, J1

Reviews

2 review(s) available for (3r)-((2,3-dihydro-5-methyl-3-((4-morpholinyl)methyl)pyrrolo-(1,2,3-de)-1,4-benzoxazin-6-yl)(1-naphthalenyl))methanone and am 1241

ArticleYear
Contributions of academic laboratories to the discovery and development of chemical biology tools.
    Journal of medicinal chemistry, 2013, Sep-26, Volume: 56, Issue:18

    Topics: Animals; Biology; Biomedical Research; Chemistry; Drug Discovery; Humans; Laboratories; Reactive Oxygen Species

2013
Therapeutic utility of cannabinoid receptor type 2 (CB(2)) selective agonists.
    Journal of medicinal chemistry, 2013, Nov-14, Volume: 56, Issue:21

    Topics: Animals; Drug Design; Humans; Ligands; Models, Molecular; Molecular Conformation; Receptor, Cannabinoid, CB2; Structure-Activity Relationship; Substrate Specificity

2013

Other Studies

3 other study(ies) available for (3r)-((2,3-dihydro-5-methyl-3-((4-morpholinyl)methyl)pyrrolo-(1,2,3-de)-1,4-benzoxazin-6-yl)(1-naphthalenyl))methanone and am 1241

ArticleYear
Indol-3-yl-tetramethylcyclopropyl ketones: effects of indole ring substitution on CB2 cannabinoid receptor activity.
    Journal of medicinal chemistry, 2008, Mar-27, Volume: 51, Issue:6

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Binding, Competitive; Cell Line; Disease Models, Animal; Drug Evaluation, Preclinical; Humans; Hyperalgesia; Indoles; Ketones; Ligands; Molecular Conformation; Rats; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Stereoisomerism; Structure-Activity Relationship

2008
Indol-3-ylcycloalkyl ketones: effects of N1 substituted indole side chain variations on CB(2) cannabinoid receptor activity.
    Journal of medicinal chemistry, 2010, Jan-14, Volume: 53, Issue:1

    Topics: Drug Design; Humans; Indoles; Ketones; Ligands; Molecular Structure; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Stereoisomerism; Structure-Activity Relationship

2010
Three-dimensional quantitative structure-selectivity relationships analysis guided rational design of a highly selective ligand for the cannabinoid receptor 2.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:2

    Topics: Computer Simulation; Drug Design; Humans; Ligands; Models, Molecular; Molecular Structure; Quantitative Structure-Activity Relationship; Quinolones; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Recombinant Proteins; Stereoisomerism

2011