(1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid has been researched along with 2,3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (33.33) | 29.6817 |
2010's | 2 (66.67) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Hull, C; von Gersdorff, H | 1 |
Angulo, MC; Audinat, E; Butt, AM; Maldonado, PP; VĂ©lez-Fort, M | 1 |
Kim, MH; Vickers, E; Vigh, J; von Gersdorff, H | 1 |
3 other study(ies) available for (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid and 2,3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline
Article | Year |
---|---|
Fast endocytosis is inhibited by GABA-mediated chloride influx at a presynaptic terminal.
Topics: Animals; Bicuculline; Calcium; Cells, Cultured; Chelating Agents; Chlorides; Dose-Response Relationship, Drug; Drug Interactions; Egtazic Acid; Endocytosis; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; GABA Antagonists; gamma-Aminobutyric Acid; Goldfish; In Vitro Techniques; Ionophores; Membrane Potentials; Microscopy, Electron, Transmission; Models, Neurological; Neural Inhibition; Neurons; Nystatin; Patch-Clamp Techniques; Phosphinic Acids; Picrotoxin; Presynaptic Terminals; Pyridines; Quinoxalines; Retina; Time Factors; Valine | 2004 |
Postnatal switch from synaptic to extrasynaptic transmission between interneurons and NG2 cells.
Topics: Age Factors; Animals; Animals, Newborn; Biophysics; Calcium; Cell Line, Transformed; Cerebral Cortex; Electric Conductivity; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; In Vitro Techniques; Interneurons; Luminescent Proteins; Lysine; Mice; Mice, Transgenic; Neurotransmitter Uptake Inhibitors; Nipecotic Acids; Oligodendroglia; Oximes; Patch-Clamp Techniques; Phosphinic Acids; Pyridazines; Pyridines; Quinoxalines; Statistics, Nonparametric; Stem Cells; Synapses; Synaptic Transmission | 2010 |
Paired-pulse plasticity in the strength and latency of light-evoked lateral inhibition to retinal bipolar cell terminals.
Topics: Anesthetics, Local; Animals; Axotomy; Biophysical Phenomena; Drug Interactions; Electric Stimulation; Excitatory Amino Acid Antagonists; GABA Antagonists; Goldfish; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Light; Neural Inhibition; Neuronal Plasticity; Patch-Clamp Techniques; Phosphinic Acids; Photons; Presynaptic Terminals; Pyridazines; Pyridines; Quinoxalines; Reaction Time; Retina; Retinal Bipolar Cells; Tetrodotoxin; Time Factors | 2012 |