(-)-catechin has been researched along with chrysin in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 4 (80.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Brun, R; Lack, G; Perozzo, R; Rüedi, P; Scapozza, L; Tasdemir, D | 1 |
Arioka, S; Hinou, H; Nishimura, S; Sakagami, M; Takemoto, H; Togame, H; Uematsu, R; Yamaguchi, H | 1 |
Liu, Y; Nair, MG | 1 |
Al-Asri, J; Fazekas, E; Görick, C; Gyémánt, G; Lehoczki, G; Melzig, MF; Mortier, J; Perdih, A; Wolber, G | 1 |
Hang, HC; Tsou, LK; Yount, JS | 1 |
5 other study(ies) available for (-)-catechin and chrysin
Article | Year |
---|---|
Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids.
Topics: 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase; Alcohol Oxidoreductases; Animals; Antimalarials; Catechin; Cells, Cultured; Chloroquine; Drug Resistance; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH); Fatty Acids; Flavones; Flavonoids; Humans; Hydro-Lyases; Kinetics; Luteolin; Phenols; Plasmodium falciparum; Polyphenols; Structure-Activity Relationship | 2006 |
Potent inhibitor scaffold against Trypanosoma cruzi trans-sialidase.
Topics: Base Sequence; DNA Primers; Drug Evaluation, Preclinical; Enzyme Inhibitors; Glycoproteins; Neuraminidase; Recombinant Proteins; Structure-Activity Relationship; Trypanosoma cruzi | 2010 |
An efficient and economical MTT assay for determining the antioxidant activity of plant natural product extracts and pure compounds.
Topics: Antioxidants; Coloring Agents; Formazans; Free Radical Scavengers; Mitochondria; Molecular Structure; NADP; Oxidation-Reduction; Plant Extracts; Singlet Oxygen; Tetrazolium Salts; Thiazoles | 2010 |
From carbohydrates to drug-like fragments: Rational development of novel α-amylase inhibitors.
Topics: alpha-Amylases; Carbohydrates; Dose-Response Relationship, Drug; Drug Discovery; Enzyme Inhibitors; High-Throughput Screening Assays; Humans; Models, Molecular; Molecular Structure; Structure-Activity Relationship | 2015 |
Epigallocatechin-3-gallate inhibits bacterial virulence and invasion of host cells.
Topics: Bacterial Proteins; Catechin; Dose-Response Relationship, Drug; Epithelial Cells; HeLa Cells; Humans; Microbial Sensitivity Tests; Molecular Structure; Plant Extracts; Salmonella typhimurium; Structure-Activity Relationship; Tea | 2017 |