Page last updated: 2024-12-06

nsc 520594

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth

Cross-References

ID SourceID
PubMed CID22523
CHEMBL ID164651
SCHEMBL ID28686
SCHEMBL ID17347355
MeSH IDM0238043

Synonyms (48)

Synonym
EN300-39249
ccris 3255
einecs 228-153-0
5-nitro-1h-indole
OPREA1_492280
6146-52-7
nsc-520594
indole, 5-nitro-
1h-indole, 5-nitro-
nsc520594
mls003373832 ,
5-nitroindole, 98%
5-nitroindole ,
N-3000
AC-7395
CHEMBL164651
N0400
A833241
A8522
smr002048627
AKOS005199981
unii-o2bhx6edbn
o2bhx6edbn ,
nsc 520594
PS-3152
AB00487
2hu ,
FT-0620709
5-nitro indole
AM81195
SCHEMBL28686
SY006010
mfcd00005673
SCHEMBL17347355
4-cyano-4-phenylpiperidinehydrochloride
STR04237
nitroindole, 5-
DTXSID80210403
F8889-7938
5-nitroindole, purum, >=97.0% (tlc)
CS-D1052
STL555105
AKOS025395640
BCP00104
BBL101309
Q27285232
HY-59273
Z382696860
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (1)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
TAR DNA-binding protein 43Homo sapiens (human)Potency18.65481.778316.208135.4813AID652104
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (18)

Processvia Protein(s)Taxonomy
negative regulation of protein phosphorylationTAR DNA-binding protein 43Homo sapiens (human)
mRNA processingTAR DNA-binding protein 43Homo sapiens (human)
RNA splicingTAR DNA-binding protein 43Homo sapiens (human)
negative regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
regulation of protein stabilityTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of insulin secretionTAR DNA-binding protein 43Homo sapiens (human)
response to endoplasmic reticulum stressTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of protein import into nucleusTAR DNA-binding protein 43Homo sapiens (human)
regulation of circadian rhythmTAR DNA-binding protein 43Homo sapiens (human)
regulation of apoptotic processTAR DNA-binding protein 43Homo sapiens (human)
negative regulation by host of viral transcriptionTAR DNA-binding protein 43Homo sapiens (human)
rhythmic processTAR DNA-binding protein 43Homo sapiens (human)
regulation of cell cycleTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA destabilizationTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA stabilizationTAR DNA-binding protein 43Homo sapiens (human)
nuclear inner membrane organizationTAR DNA-binding protein 43Homo sapiens (human)
amyloid fibril formationTAR DNA-binding protein 43Homo sapiens (human)
regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (10)

Processvia Protein(s)Taxonomy
RNA polymerase II cis-regulatory region sequence-specific DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
double-stranded DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
RNA bindingTAR DNA-binding protein 43Homo sapiens (human)
mRNA 3'-UTR bindingTAR DNA-binding protein 43Homo sapiens (human)
protein bindingTAR DNA-binding protein 43Homo sapiens (human)
lipid bindingTAR DNA-binding protein 43Homo sapiens (human)
identical protein bindingTAR DNA-binding protein 43Homo sapiens (human)
pre-mRNA intronic bindingTAR DNA-binding protein 43Homo sapiens (human)
molecular condensate scaffold activityTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (9)

Processvia Protein(s)Taxonomy
intracellular non-membrane-bounded organelleTAR DNA-binding protein 43Homo sapiens (human)
nucleusTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
perichromatin fibrilsTAR DNA-binding protein 43Homo sapiens (human)
mitochondrionTAR DNA-binding protein 43Homo sapiens (human)
cytoplasmic stress granuleTAR DNA-binding protein 43Homo sapiens (human)
nuclear speckTAR DNA-binding protein 43Homo sapiens (human)
interchromatin granuleTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
chromatinTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (13)

Assay IDTitleYearJournalArticle
AID200690Mutagenic activity in an Ames test on Salmonella Typhimurium TA98; Activity is log of revertants/nmol1991Journal of medicinal chemistry, Feb, Volume: 34, Issue:2
Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity.
AID23442Partition coefficient (logP)1991Journal of medicinal chemistry, Feb, Volume: 34, Issue:2
Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity.
AID1129169Inhibition of Escherichia coli DNA polymerase 3 beta assessed as inhibition of 5-carboxyfluorescein-QLDLF binding at <1 mM by fluorescence polarization-based competition assay2014Journal of medicinal chemistry, Mar-27, Volume: 57, Issue:6
Discovery of lead compounds targeting the bacterial sliding clamp using a fragment-based approach.
AID1524436Substrate activity at recombinant Haemophilus influenzae Chloramphenicol nitroreductase expressed in Escherichia coli assessed as initial rate of reaction at 150 uM measured at 30 sec interval for 5 mins in presence of NADPH at pH 8 under 37 degC by UV-vi2019Bioorganic & medicinal chemistry letters, 05-01, Volume: 29, Issue:9
Investigating the promiscuity of the chloramphenicol nitroreductase from Haemophilus influenzae towards the reduction of 4-nitrobenzene derivatives.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (29)

TimeframeStudies, This Drug (%)All Drugs %
pre-19901 (3.45)18.7374
1990's9 (31.03)18.2507
2000's6 (20.69)29.6817
2010's10 (34.48)24.3611
2020's3 (10.34)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews1 (3.33%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other29 (96.67%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]