N-benzyloxycarbonylglycyl-leucyl-phenylalanine chloromethyl ketone: inhibitor of cathepsin G
ID Source | ID |
---|---|
PubMed CID | 11755771 |
CHEMBL ID | 2370647 |
MeSH ID | M0219094 |
Synonym |
---|
n-benzyloxycarbonylglycyl-leucyl-phenylalanine chloromethyl ketone |
41658-44-0 |
l-leucinamide, n-((phenylmethoxy)carbonyl)glycyl-n-(3-chloro-2-oxo-1-(phenylmethyl)propyl)-, (s)- |
n-benzyloxycarbonyl-gly-leu-phe-ch2cl |
(s)-n-((phenylmethoxy)carbonyl)glycyl-n-(3-chloro-2-oxo-1-(phenylmethyl)propyl)-l-leucinamide |
z-gly-leu-phe-ch2cl |
CHEMBL2370647 |
z-gly-leu-phe-chloromethyl ketone, >=90% (tlc), solid |
NCGC00485375-01 |
z-gly-leu-phe-chloromethyl ketone |
benzyloxycarbonyl-gly-leu-phe-ch2cl |
DTXSID00961884 |
2-[(2-{[(benzyloxy)(hydroxy)methylidene]amino}-1-hydroxyethylidene)amino]-n-(4-chloro-3-oxo-1-phenylbutan-2-yl)-4-methylpentanimidic acid |
benzyl n-[2-[[(2s)-1-[[(2s)-4-chloro-3-oxo-1-phenylbutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-2-oxoethyl]carbamate |
PD194253 |
Excerpt | Reference | Relevance |
---|---|---|
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs." | ( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019) | 0.51 |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID1296008 | Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening | 2020 | SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1 | Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening. |
AID1346987 | P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen | 2019 | Molecular pharmacology, 11, Volume: 96, Issue:5 | A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. |
AID1347160 | Primary screen NINDS Rhodamine qHTS for Zika virus inhibitors | 2020 | Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49 | Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors. |
AID1346986 | P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen | 2019 | Molecular pharmacology, 11, Volume: 96, Issue:5 | A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. |
AID1347159 | Primary screen GU Rhodamine qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay | 2020 | Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49 | Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (16.67) | 18.2507 |
2000's | 2 (33.33) | 29.6817 |
2010's | 1 (16.67) | 24.3611 |
2020's | 2 (33.33) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.82) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 6 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |