Page last updated: 2024-12-06

n 0437, (-)-isomer

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

rotigotine: Antiparkinson Agent and dopamine receptor agonist; structure given in first source; RN given refers to cpd without isomeric designation [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

Cross-References

ID SourceID
PubMed CID59227
CHEMBL ID1303
CHEBI ID135351
SCHEMBL ID1088585
MeSH IDM0322608

Synonyms (86)

Synonym
AC-3547
HY-75502
(6s)-6-(propyl-(2-thiophen-2-ylethyl)amino)-5,6,7,8-tetrahydronaphthalen-1-ol
gtpl941
spm-937
spm-962
leganto
rotigotine
(-)-n-0437
neupro
rotigotine cds
spm-936
99755-59-6
rotigotine (jan/usan/inn)
neupro (tn)
D05768
(6s)-6-(propyl(2-(2-thienyl)ethyl)amino)-5,6,7,8-tetrahydro-1-naphthalenol
rotigotine cds patch
1-naphthalenol, 5,6,7,8-tetrahydro-6-(propyl (2-(2-thienyl)ethyl)amino-(6s)-
spm 962
(-)-(s)-5,6,7,8-tetrahydro-6-(propyl(2-(2-thienyl)ethyl)amino)-1-naphthol
NCGC00168748-01
CHEBI:135351
CHEMBL1303 ,
DB05271
bdbm50123626
(s)-6-[propyl-(2-thiophen-2-yl-ethyl)-amino]-5,6,7,8-tetrahydro-naphthalen-1-ol
(6s)-6-[propyl(2-thiophen-2-ylethyl)amino]-5,6,7,8-tetrahydronaphthalen-1-ol
A846076
(2s)-2-[propyl-[2-(2-thienyl)ethyl]amino]tetralin-5-ol
unii-87t4t8bo2e
hsdb 8254
rotigotine [usan:inn:ban]
87t4t8bo2e ,
cas-99755-59-6
dtxcid3026772
tox21_112627
dtxsid5046772 ,
S4274
CS-0376
AKOS016340728
(s)-5,6,7,8-tetrahydro-6-(propyl(2-(2-thienyl)ethyl)amino)-1-naphthol
rotigotine [usp-rs]
rotigotine [ep monograph]
1-naphthalenol, 5,6,7,8-tetrahydro-6-(propyl(2-(2-thienyl)ethyl)amino-(6s)-
rotigotine [mi]
rotigotine [vandf]
rotigotine [mart.]
rotigotine [who-dd]
rotigotine [orange book]
rotigotine [jan]
rotigotine [ema epar]
rotigotine [usan]
rotigotine [inn]
rotigotine [usp monograph]
KFQYTPMOWPVWEJ-INIZCTEOSA-N
(s)-5,6,7,8-tetrahydro-6-[propyl[2-(2-thienyl)ethyl]amino]-1-naphthol
tox21_112627_1
NCGC00168748-02
SS-4572
SCHEMBL1088585
J-502471
(s)-6-(propyl(2-(thiophen-2-yl)ethyl)amino)-5,6,7,8-tetrahydronaphthalen-1-ol
(6s)-5,6,7,8-tetrahydro-6-[propyl[2-(2-thienyl)ethyl]amino]-1-naphthalenol
EX-A1164
mfcd00870193
SW220014-1
Q411985
(6s)-rotigotine
99755-59-6 (free base)
F13103
HMS3885D17
CCG-267650
R0220
EN300-26189697
(6s)-6-{propyl[2-(thiophen-2-yl)ethyl]amino}-5,6,7,8-tetrahydronaphthalen-1-ol
(6~{s})-6-[propyl(2-thiophen-2-ylethyl)amino]-5,6,7,8-tetrahydronaphthalen-1-ol
r5f ,
rotigotinum
rotigotine (usp-rs)
rotigotine (ep monograph)
rotigotina
n04bc09
rotigotine (mart.)
(6s)-6-(propyl(2-(thiophen-2-yl)ethyl)amino)-5,6,7,8-tetrahydronaphthalen-1-ol
rotigotine (usp monograph)

Research Excerpts

Toxicity

ExcerptReferenceRelevance
" The most common adverse events were application site reactions (40."( One year open-label safety and efficacy trial with rotigotine transdermal patch in moderate to severe idiopathic restless legs syndrome.
Benes, H; Garcia-Borreguero, D; Geisler, P; Högl, B; Kohnen, R; Oertel, WH; Schollmayer, E; Stiasny-Kolster, K; Tacken, I; Trenkwalder, C, 2008
)
0.35
" The transdermal patch was safe and generally well tolerated by the majority of patients."( One year open-label safety and efficacy trial with rotigotine transdermal patch in moderate to severe idiopathic restless legs syndrome.
Benes, H; Garcia-Borreguero, D; Geisler, P; Högl, B; Kohnen, R; Oertel, WH; Schollmayer, E; Stiasny-Kolster, K; Tacken, I; Trenkwalder, C, 2008
)
0.35
" A reduction in the dopaminergic side-effect nausea was seen with domperidone comedication."( Influence of domperidone on pharmacokinetics, safety and tolerability of the dopamine agonist rotigotine.
Boekens, H; Braun, M; Cawello, W; Horstmann, R, 2009
)
0.35
"Somnolence is one of the most common adverse effects of a dopaminergic agonist, rotigotine."( Rotigotine adverse effects affecting patient's sexual partner.
Hedera, P,
)
0.13
" Safety assessments included adverse events (AEs) and efficacy was measured by the International RLS Study Group Severity Rating Scale (IRLS), RLS-6 scales and Clinical Global Impression (CGI)."( Treatment of moderate to severe restless legs syndrome: 2-year safety and efficacy of rotigotine transdermal patch.
Beneš, H; García-Borreguero, D; Geisler, P; Högl, B; Kohnen, R; Oertel, WH; Poewe, W; Schollmayer, E; Stiasny-Kolster, K; Trenkwalder, C, 2010
)
0.36
" Primary safety outcomes included occurrence of adverse events and dropouts."( Long-term safety and efficacy of rotigotine transdermal patch for moderate-to-severe idiopathic restless legs syndrome: a 5-year open-label extension study.
Beneš, H; Ferini-Strambi, L; Fichtner, A; García-Borreguero, D; Högl, B; Kohnen, R; Oertel, W; Poewe, W; Schollmayer, E; Stiasny-Kolster, K; Trenkwalder, C, 2011
)
0.37
" 169 (57%) patients discontinued treatment, 89 (30%) because of adverse events and 31 (11%) because of lack of efficacy."( Long-term safety and efficacy of rotigotine transdermal patch for moderate-to-severe idiopathic restless legs syndrome: a 5-year open-label extension study.
Beneš, H; Ferini-Strambi, L; Fichtner, A; García-Borreguero, D; Högl, B; Kohnen, R; Oertel, W; Poewe, W; Schollmayer, E; Stiasny-Kolster, K; Trenkwalder, C, 2011
)
0.37
" Primary outcomes included adverse events (AEs) and extent of rotigotine exposure."( Long-term safety and tolerability of rotigotine transdermal system in patients with early-stage idiopathic Parkinson's disease: a prospective, open-label extension study.
Boroojerdi, B; Elmer, LW; Jankovic, J; Surmann, E, 2012
)
0.38
" Overall, these trials have shown that rotigotine has a similar adverse event (AE) profile as other non-ergolinic dopamine agonists such as pramipexole or ropinirole, inducing typical dopaminergic effects like nausea, daytime somnolence, peripheral edema or impulse control disorders."( Drug safety evaluation of rotigotine.
Poewe, W; Seppi, K; Sprenger, FS, 2012
)
0.38
" A post hoc analysis of data from these pivotal trials was carried out to compare the adverse event (AE) profiles of younger and older patient populations."( Treatment of patients with early and advanced Parkinson's disease with rotigotine transdermal system: age-relationship to safety and tolerability.
Boroojerdi, B; Ghys, L; Giladi, N; Grieger, F; LeWitt, P; Oertel, W, 2013
)
0.39
" Treatment-emergent adverse events were mild to moderate in severity, and included application site reactions (52."( Efficacy, safety and risk of augmentation of rotigotine for treating restless legs syndrome.
Garcia-Borreguero, D; Hattori, N; Hayashida, K; Hirata, K; Inoue, Y; Tomida, T, 2013
)
0.39
"Safety was assessed by adverse events (AEs) and efficacy was assessed by the International Restless Legs Syndrome Study Group Rating Scale (IRLS)."( Safety and efficacy of rotigotine transdermal patch in patients with restless legs syndrome: a post-hoc analysis of patients taking 1 - 3 mg/24 h for up to 5 years.
Bauer, L; Dohin, E; Ferini-Strambi, L; Fichtner, A; García-Borreguero, D; Högl, B; Schollmayer, E, 2013
)
0.39
" The No Observed Adverse Effect Level (NOAEL) was 45 mg/kg/week."( Three-month subchronic intramuscular toxicity study of rotigotine-loaded microspheres in SD rats.
Cen, X; Du, G; Guan, X; Li, Y; Liu, W; Tian, J; Ye, L; Yu, P; Yu, X; Zhang, J, 2013
)
0.39
" Primary outcomes included adverse events (AEs) and extent of rotigotine exposure."( The safety and tolerability of rotigotine transdermal system over a 6-year period in patients with early-stage Parkinson's disease.
Boroojerdi, B; Giladi, N; Surmann, E, 2013
)
0.39
"6% of patients in the rotigotine 2 mg/24 h, 3 mg/24 h, and placebo groups, respectively, experienced adverse events (AEs) including application site reactions in 42."( Efficacy and safety of rotigotine in Japanese patients with restless legs syndrome: a phase 3, multicenter, randomized, placebo-controlled, double-blind, parallel-group study.
Hattori, N; Hirata, K; Ikeda, J; Inoue, Y; Ishigooka, J; Oka, Y; Shimizu, T; Tomida, T; Uchimura, N, 2013
)
0.39
" Most adverse events were mild in intensity and typical for dopamine agonists or for transdermal therapeutics."( Pharmacokinetics, safety and tolerability of rotigotine transdermal patch in healthy Japanese and Caucasian subjects.
Braun, M; Cawello, W; Elshoff, JP; Funaki, T; Ikeda, J; Kim, SR, 2014
)
0.4
" Outcomes, including Unified Parkinson's Disease Rating Scale (UPDRS) Part III and Part II scores, 'off' time, adverse events (AEs), serious AEs and discontinuation because of AEs, were compared between rotigotine and placebo groups under a fixed or random effect model."( Safety and Efficacy of Rotigotine for Treating Parkinson's Disease: A Meta-Analysis of Randomised Controlled Trials.
Chen, F; Jin, L; Nie, Z, 2017
)
0.46
" The age of the patient impacts the effect and adverse events of anti-parkinsonian treatment."( Efficacy and safety of rotigotine in elderly patients with Parkinson's disease in comparison with the non-elderly: a post hoc analysis of randomized, double-blind, placebo-controlled trials.
Iwaki, H; Kondo, H; Nomoto, M; Sakurai, M, 2018
)
0.48
" The frequency of adverse drug reaction (ADR) was 34."( Real-world safety and effectiveness of rotigotine in patients with Parkinson's disease: analysis of a post-marketing surveillance study in Japan.
Fukuta, Y; Ito, H; Kondo, H; Takayama, T, 2022
)
0.72
" Pramipexole ER ranked first in overall withdrawals, and rotigotine transdermal patch ranked first in the incidence of adverse events (≥1 AEs)."( Efficacy and safety of non-ergot dopamine-receptor agonists as an adjunct to levodopa in advanced Parkinson's disease: A network meta-analysis.
Chen, FF; Chen, XT; Wen, SY; Zhang, Q; Zhou, CQ, 2023
)
0.91

Pharmacokinetics

ExcerptReferenceRelevance
"A pharmacokinetic study of the dopamine D2 receptor agonist (S)-(-)-2-(N-propyl-N-(2-thienylethyl)amino)-5-hydroxytetralin+ ++-HCl (N-0923) infused in female cynomolgus monkeys over a 4-h period was carried out at International Research and Development Corporation."( Pharmacokinetic study of (S)-(-)-2-(N-propyl-N-(2-thienylethyl)amino)-5-hydroxytetralin infusion in cynomolgus monkeys.
Cefali, EA; McConnell, WR; Walters, DR, 1994
)
0.29
" Pharmacokinetic analysis based on a two-compartment model with elimination from the central compartment yielded the following parameters for male rats (mean +/- standard deviation, n = 3): elimination half-life was 108 +/- 7 min, apparent volume of distribution of the central compartment was 397 +/- 44 mL."( Pharmacokinetics of the dopamine D2 agonist S(-)-2-(N-propyl-N-2-thienylethylamino)-5-hydroxytetralin in freely moving rats.
de Zeeuw, RA; Swart, PJ, 1993
)
0.29
" Pharmacokinetic variables describing systemic exposure and renal elimination of rotigotine and metabolites, and safety and tolerability of the treatment were assessed."( Influence of domperidone on pharmacokinetics, safety and tolerability of the dopamine agonist rotigotine.
Boekens, H; Braun, M; Cawello, W; Horstmann, R, 2009
)
0.35
"The primary steady-state pharmacokinetic parameters (C(max,ss) and AUC((0-24),ss)) were similar with or without co-administration of domperidone."( Influence of domperidone on pharmacokinetics, safety and tolerability of the dopamine agonist rotigotine.
Boekens, H; Braun, M; Cawello, W; Horstmann, R, 2009
)
0.35
"No changes of pharmacokinetic parameters describing systemic exposure and renal elimination of rotigotine were observed when domperidone was administered concomitantly with rotigotine."( Influence of domperidone on pharmacokinetics, safety and tolerability of the dopamine agonist rotigotine.
Boekens, H; Braun, M; Cawello, W; Horstmann, R, 2009
)
0.35
"This open-label phase I trial assessed potential pharmacokinetic interactions between oral levodopa/carbidopa and transdermal rotigotine treatment at steady state."( Lack of pharmacokinetic interactions between transdermal rotigotine and oral levodopa/carbidopa.
Andreas, JO; Boekens, H; Braun, M; Cawello, W; Horstmann, R, 2009
)
0.35
"Point estimates for the ratios between the groups with moderate to severe renal impairment and healthy subjects for the pharmacokinetic parameters AUC(0,t(last) ) and C(max) for the active substance unconjugated rotigotine were near 1:0."( Single dose pharmacokinetics of the transdermal rotigotine patch in patients with impaired renal function.
Ahrweiler, S; Braun, M; Cawello, W; Sulowicz, W; Szymczakiewicz-Multanowska, A, 2012
)
0.38
"The pharmacokinetic profiles of unconjugated rotigotine were similar in healthy subjects and subjects with impaired renal function indicating that no dose adjustments are required for transdermal rotigotine in patients with different stages of chronic renal insufficiency including patients on haemodialysis."( Single dose pharmacokinetics of the transdermal rotigotine patch in patients with impaired renal function.
Ahrweiler, S; Braun, M; Cawello, W; Sulowicz, W; Szymczakiewicz-Multanowska, A, 2012
)
0.38
" Blood and urine samples were collected to evaluate pharmacokinetic parameters characterizing drug bioavailability and elimination."( Influence of hepatic impairment on the pharmacokinetics of the dopamine agonist rotigotine.
Boekens, H; Braun, M; Cawello, W; Fichtner, A, 2014
)
0.4
" The main outcome measures were the plasma concentrations of unconjugated and total rotigotine and its desalkyl metabolites and derived pharmacokinetic parameters (area under the concentration-time curve from time zero to last quantifiable concentration [AUClast], maximum plasma concentration [Cmax], and body weight- and dose-normalized values)."( Pharmacokinetics, safety and tolerability of rotigotine transdermal patch in healthy Japanese and Caucasian subjects.
Braun, M; Cawello, W; Elshoff, JP; Funaki, T; Ikeda, J; Kim, SR, 2014
)
0.4
"The pharmacokinetic analysis included 48 subjects (24 Japanese, 24 Caucasian)."( Pharmacokinetics, safety and tolerability of rotigotine transdermal patch in healthy Japanese and Caucasian subjects.
Braun, M; Cawello, W; Elshoff, JP; Funaki, T; Ikeda, J; Kim, SR, 2014
)
0.4
"Administration of a single patch delivering 2 mg/24 h rotigotine resulted in comparable pharmacokinetic profiles in Japanese and Caucasian subjects."( Pharmacokinetics, safety and tolerability of rotigotine transdermal patch in healthy Japanese and Caucasian subjects.
Braun, M; Cawello, W; Elshoff, JP; Funaki, T; Ikeda, J; Kim, SR, 2014
)
0.4
" 12 Japanese and 12 Caucasian subjects were included in the pharmacokinetic analyses."( Pharmacokinetics, safety, and tolerability of rotigotine transdermal system in healthy Japanese and Caucasian subjects following multiple-dose administration.
Braun, M; Cawello, W; Elshoff, JP; Funaki, T; Ikeda, J; Kim, SR; Masahiro, T, 2016
)
0.43
" The objective of the present study was to determine the pharmacokinetic characteristics and tolerability of rotigotine transdermal patch after repeated-dose application in healthy male and female Korean subjects."( Pharmacokinetic properties and tolerability of rotigotine transdermal patch after repeated-dose application in healthy korean volunteers.
Andreas, JO; Braun, M; Cawello, W; Elshoff, JP; Jang, IJ; Kim, BH; Kim, JR; Soo Lim, K; Yu, KS, 2015
)
0.42
"This narrative review reports on the pharmacological and pharmacokinetic properties of rotigotine, a non-ergolinic D₃/D₂/D₁ dopamine receptor agonist approved for the treatment of early- and advanced-stage Parkinson's disease (PD) and moderate to severe restless legs syndrome (RLS)."( An update on pharmacological, pharmacokinetic properties and drug-drug interactions of rotigotine transdermal system in Parkinson's disease and restless legs syndrome.
Andreas, JO; Braun, M; Cawello, W; Elshoff, JP; Mathy, FX, 2015
)
0.42
" Blood and urine samples were collected on days 6 and 12 to evaluate rotigotine pharmacokinetic parameters alone and in the presence of omeprazole."( No influence of the CYP2C19-selective inhibitor omeprazole on the pharmacokinetics of the dopamine receptor agonist rotigotine.
Andreas, JO; Braun, M; Cawello, W; Elshoff, JP, 2014
)
0.4
" This method was successfully applied to a pharmacokinetic study of a slow release RGTB formulation in rats following a single intramuscular injection and biological conversion in vitro."( Validated LC-MS/MS method for the simultaneous determination of rotigotine and its prodrug in rat plasma and an application to pharmacokinetics and biological conversion in vitro.
Han, J; Li, Y; Liu, W; Sha, C; Shao, X; Wang, L; Yang, H; Yu, F; Zhao, F, 2017
)
0.46
" The pharmacokinetic study was conducted on albino Wistar rats to evaluate the bioavailability and neuropharmacokinetic parameters after intranasal administration of the optimized formulation (RT-CH-NLCs-OPT)."( Formulation of intranasal surface engineered nanostructured lipid carriers of rotigotine: Full factorial design optimization, in vitro characterization, and pharmacokinetic evaluation.
Alruwaili, NK; Awad Alsaidan, O; Muqtader Ahmed, M; Saad Alharbi, K; Sarim Imam, S; Singh, L; Yasir, M; Zafar, A, 2022
)
0.72

Compound-Compound Interactions

ExcerptReferenceRelevance
" When combined with N-0923, nicotine did not further enhance its effects."( Nicotine alone and in combination with L-DOPA methyl ester or the D(2) agonist N-0923 in MPTP-induced chronic hemiparkinsonian monkeys.
Domino, EF; Ni, L; Zhang, H, 1999
)
0.3
" No clinically relevant drug-drug interactions were observed following co-administration of rotigotine with levodopa/carbidopa, domperidone, or the CYP450 inhibitors cimetidine or omeprazole."( An update on pharmacological, pharmacokinetic properties and drug-drug interactions of rotigotine transdermal system in Parkinson's disease and restless legs syndrome.
Andreas, JO; Braun, M; Cawello, W; Elshoff, JP; Mathy, FX, 2015
)
0.42

Bioavailability

ExcerptReferenceRelevance
"The study results show no evidence for an interaction of domperidone on bioavailability and steady-state pharmacokinetics of transdermal rotigotine."( Influence of domperidone on pharmacokinetics, safety and tolerability of the dopamine agonist rotigotine.
Boekens, H; Braun, M; Cawello, W; Horstmann, R, 2009
)
0.35
" Disposition, metabolism, elimination, and absolute bioavailability of rotigotine were determined in six healthy male subjects by using two different forms of administration in a randomized sequence with a crossover design."( Absorption, disposition, metabolic fate, and elimination of the dopamine agonist rotigotine in man: administration by intravenous infusion or transdermal delivery.
Boekens, H; Braun, M; Cawello, W, 2009
)
0.35
" Main evaluations included relative bioavailability and renal elimination of rotigotine and its metabolites."( Single dose pharmacokinetics of the transdermal rotigotine patch in patients with impaired renal function.
Ahrweiler, S; Braun, M; Cawello, W; Sulowicz, W; Szymczakiewicz-Multanowska, A, 2012
)
0.38
" In addition, the relative bioavailability of a single, large patch versus 2 smaller patches was assessed."( Steady-state plasma concentration profile of transdermal rotigotine: an integrated analysis of three, open-label, randomized, phase I multiple dose studies.
Andreas, JO; Braun, M; Cawello, W; Elshoff, JP; Middle, M, 2012
)
0.38
" Relative rotigotine bioavailability from a 40 cm(2) patch versus 2 × 20 cm(2) patches (SP651) and from a 15 cm(2) patch versus 1 × 5 cm(2) + 1 × 10 cm(2) patches (SP871) was also evaluated."( Steady-state plasma concentration profile of transdermal rotigotine: an integrated analysis of three, open-label, randomized, phase I multiple dose studies.
Andreas, JO; Braun, M; Cawello, W; Elshoff, JP; Middle, M, 2012
)
0.38
" The three studies reported here were conducted to determine whether the new room temperature stable patch demonstrated similar bioavailability and adhesiveness to the original and intermediate patches."( Comparison of the bioavailability and adhesiveness of different rotigotine transdermal patch formulations.
Arth, C; Bauer, L; Brunnert, M; Elshoff, JP; Komenda, M; Schmid, M; Timmermann, L, 2013
)
0.39
" Blood and urine samples were collected to evaluate pharmacokinetic parameters characterizing drug bioavailability and elimination."( Influence of hepatic impairment on the pharmacokinetics of the dopamine agonist rotigotine.
Boekens, H; Braun, M; Cawello, W; Fichtner, A, 2014
)
0.4
" The bioavailability of the optimized formulation compared with intravenous administration was approximately 20%."( Preparation and characterization of sustained-release rotigotine film-forming gel.
Li, X; Li, Y; Liang, R; Liu, W; Su, Z; Sun, F; Wang, C; Zhang, R, 2014
)
0.4
" Bioavailability is greater in gabapentin enacarbil as compared to gabapentin."( New treatment options for the management of restless leg syndrome.
Toro, BE, 2014
)
0.4
" The optimized formulation was used to prepare a microemulsion-based hydrogel, which was subjected to bioavailability and skin irritancy studies."( Lower irritation microemulsion-based rotigotine gel: formulation optimization and in vitro and in vivo studies.
Chu, SY; Lian, SN; Ma, PK; Mu, HJ; Sun, KX; Wang, AP; Wang, WY; Wang, Z; Zhang, FP; Zhang, WW; Zhang, XM, 2015
)
0.42
" The bioavailability of the rotigotine-loaded microemulsion gel was 105."( Lower irritation microemulsion-based rotigotine gel: formulation optimization and in vitro and in vivo studies.
Chu, SY; Lian, SN; Ma, PK; Mu, HJ; Sun, KX; Wang, AP; Wang, WY; Wang, Z; Zhang, FP; Zhang, WW; Zhang, XM, 2015
)
0.42
" Absolute bioavailability after 24 h transdermal delivery is 37 % of the applied rotigotine dose."( An update on pharmacological, pharmacokinetic properties and drug-drug interactions of rotigotine transdermal system in Parkinson's disease and restless legs syndrome.
Andreas, JO; Braun, M; Cawello, W; Elshoff, JP; Mathy, FX, 2015
)
0.42
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
" The pharmacokinetic study was conducted on albino Wistar rats to evaluate the bioavailability and neuropharmacokinetic parameters after intranasal administration of the optimized formulation (RT-CH-NLCs-OPT)."( Formulation of intranasal surface engineered nanostructured lipid carriers of rotigotine: Full factorial design optimization, in vitro characterization, and pharmacokinetic evaluation.
Alruwaili, NK; Awad Alsaidan, O; Muqtader Ahmed, M; Saad Alharbi, K; Sarim Imam, S; Singh, L; Yasir, M; Zafar, A, 2022
)
0.72

Dosage Studied

ExcerptRelevanceReference
"ml-1 were found within 12 min after dosing in fasted animals."( Extensive gastrointestinal metabolic conversion limits the oral bioavailability of the dopamine D2 agonist N-0923 in freely moving rats.
De Zeeuw, RA; Swart, PJ, 1992
)
0.28
" Independent of dosing route or anaesthetic, clearance of I was rapid."( The metabolic fate of the dopamine agonist 2-(N-propyl-N-2-thienylethylamino)-5-hydroxytetralin in rats after intravenous and oral administration. I. Disposition and metabolic profiling.
de Zeeuw, RA; Drenth, BF; Gerding, TK; Horn, AS; Roosenstein, HJ; Tepper, PG, 1990
)
0.28
" As the total amount of radioactivity in both eyes 7 hr after ocular dosing is very low (0."( Ocular and systemic disposition of the dopamine agonist N-0437 in monkeys after ocular administration.
de Zeeuw, RA; Drenth, BF; Gerding, TK; Horn, AS; Oosterhuis, JA; van Delft, JL, 1990
)
0.28
" After all three dosing routes, N-0437 was metabolized almost completely prior to elimination."( Metabolism and disposition of the dopamine agonist 2-(N-propyl-N-2-thienylethylamino)-5-hydroxytetralin in conscious monkeys after subsequent i.v. oral, and ocular administration.
de Zeeuw, RA; Drenth, BF; Gerding, TK; Horn, AS; Tepper, PG,
)
0.13
" Levels of 1 in plasma were monitored up to 6 h after dosing by high-performance liquid chromatography."( Pharmacokinetics of the dopamine D2 agonist S(-)-2-(N-propyl-N-2-thienylethylamino)-5-hydroxytetralin in freely moving rats.
de Zeeuw, RA; Swart, PJ, 1993
)
0.29
" Rotigotine transdermal application also demonstrated the possibility of decreasing levodopa dosage in order to decrease its toxic effects in advanced Parkinson's disease."( Rotigotine: a novel dopamine agonist for the transdermal treatment of Parkinson's disease.
Zareba, G, 2006
)
0.33
"3 mg/kg every 2 days), hyperactivity reversed according to a U-shaped dose-response curve."( Antidepressant properties of rotigotine in experimental models of depression.
Bertaina-Anglade, V; La Rochelle, CD; Scheller, DK, 2006
)
0.33
"Transdermal rotigotine, when titrated to a dosage of 6 mg/24 h, was effective for the treatment of early-stage Parkinson disease in this trial."( Randomized, blind, controlled trial of transdermal rotigotine in early Parkinson disease.
Boroojerdi, B; Jankovic, J; Rajput, A; Rao, J; Waters, C; Watts, RL, 2007
)
0.34
" Plasma concentrations of rotigotine were linearly related to dose over dosage range employed, but not to behavioral response."( Plasma levels of rotigotine and the reversal of motor deficits in MPTP-treated primates.
Breidenbach, A; Jackson, M; Jenner, P; Rose, S; Scheller, DK; Smith, L; Stockwell, K, 2007
)
0.34
" The patients started on a dosage of 4 mg/24 h and received an incremental dosage of 4 mg/24 h per week in the fast-titration group and 2 mg/24 h per week in the slow-titration group to the maximal target dosage of 24 mg/24 h (patch size of 120 cm(2))."( High doses of rotigotine transdermal patch: results of an open-label, dose-escalation trial in patients with advanced-stage, idiopathic Parkinson disease.
Babic, T; Boothmann, B; Boroojerdi, B; Polivka, J; Randerath, O; Rektor, I,
)
0.13
" For most interventions (95%), rotigotine dosing regimens were maintained during the perioperative period."( Transdermal rotigotine for the perioperative management of restless legs syndrome.
Bauer, L; Högl, B; Oertel, WH; Schollmayer, E, 2012
)
0.38
" In this study, subchronic toxicity of RoMS in SD rats has been characterized via intramuscular administration with RoMS (0-240 mg/kg/week) on a consecutive weekly dosing schedule for 3 months followed by 1-month recovery period."( Three-month subchronic intramuscular toxicity study of rotigotine-loaded microspheres in SD rats.
Cen, X; Du, G; Guan, X; Li, Y; Liu, W; Tian, J; Ye, L; Yu, P; Yu, X; Zhang, J, 2013
)
0.39
" The full analysis set (FAS) comprised 564 patients (106 de novo; 458 pretreated [454 had complete rotigotine dosing data])."( Effectiveness and tolerability of rotigotine transdermal patch for the treatment of restless legs syndrome in a routine clinical practice setting in Germany.
Bachmann, CG; Berg, D; Berkels, R; Grieger, F; Hofmann, WE; Lauterbach, T; Schollmayer, E; Stiasny-Kolster, K, 2013
)
0.39
" Two open-label bioequivalence studies investigated the 2 mg/24 h dosage in healthy individuals (SP951, n = 52 [Clinicaltrials."( Comparison of the bioavailability and adhesiveness of different rotigotine transdermal patch formulations.
Arth, C; Bauer, L; Brunnert, M; Elshoff, JP; Komenda, M; Schmid, M; Timmermann, L, 2013
)
0.39
" These findings suggest similar dosage requirements for rotigotine transdermal system in Japanese and Caucasian populations."( Pharmacokinetics, safety, and tolerability of rotigotine transdermal system in healthy Japanese and Caucasian subjects following multiple-dose administration.
Braun, M; Cawello, W; Elshoff, JP; Funaki, T; Ikeda, J; Kim, SR; Masahiro, T, 2016
)
0.43
" Dosage of levodopa and oral DA (pramipexole ≤1."( Rotigotine transdermal system as add-on to oral dopamine agonist in advanced Parkinson's disease: an open-label study.
Bauer, L; Chung, SJ; Ikeda, J; Jeon, BS; Kim, JM; Kim, JW; Singh, P; Thierfelder, S, 2015
)
0.42
" However, dosing is occasionally reduced or discontinued after application because of several reasons such as skin reactions or unsatisfactory efficacy."( [Continued Use of Rotigotine Transdermal Patches for Parkinson Disease].
Fujioka, S; Futagami, K; Imakyure, O; Shibaguchi, H; Tsuboi, Y; Washiyama, A; Yasutaka, Y, 2016
)
0.43
" Low levodopa dosing and antioxidants in the rotigotine patch matrix prevented cysteinyl-glycine fall."( Levodopa, placebo and rotigotine change biomarker levels for oxidative stress.
Herrman, L; Kinkel, M; Muhlack, S; Müller, T, 2017
)
0.46
", switching medications within the same class when dosing is not a one-to-one ratio."( Switching from an oral dopamine receptor agonist to rotigotine transdermal patch: a review of clinical data with a focus on patient perspective.
Asgharnejad, M; Bauer, L; Benitez, A; Boroojerdi, B; Chung, SJ; Heidbrede, T; Kim, HJ; Little, A, 2017
)
0.46
"Since the effect of a percutaneous absorption-type dopamine agonist (DA) preparation, rotigotine patch, stably persists by once-a-day application, this dosage form is appropriate for Parkinson's disease patients showing levodopa induced wearing off phenomenon."( [Efficacy of Topical Agents for Symptomatic Treatment of Rotigotine Patch-Induced Skin Disorders].
Fujioka, S; Hara, K; Kamimura, H; Kiyomi, F; Ogata, K; Shibaguchi, H; Tsuboi, Y; Yasutaka, Y, 2017
)
0.46
" No difference was observed in maintenance dosage of rotigotine between the two groups."( Efficacy and safety of rotigotine in elderly patients with Parkinson's disease in comparison with the non-elderly: a post hoc analysis of randomized, double-blind, placebo-controlled trials.
Iwaki, H; Kondo, H; Nomoto, M; Sakurai, M, 2018
)
0.48
" Along time, the dosage of Rotigotine was higher in patients who did not undergo MIRT, at all observation times following T0."( Effectiveness of Rotigotine plus intensive and goal-based rehabilitation versus Rotigotine alone in "de-novo" Parkinsonian subjects: a randomized controlled trial with 18-month follow-up.
Ferrazzoli, D; Frazzitta, G; Maestri, R; Ortelli, P; Riboldazzi, G, 2018
)
0.48
"134) were clinically meaningfully greater, and mean rotigotine dosage higher (4."( Effect of using a wearable device on clinical decision-making and motor symptoms in patients with Parkinson's disease starting transdermal rotigotine patch: A pilot study.
Boroojerdi, B; Carson, S; Heldman, D; Isaacson, SH; Klos, K; Kreitzman, DL; Markowitz, M; McGraw, M; Phillips, M; Revilla, FJ; Terricabras, D; Truong, D; Waln, O; Woltering, F, 2019
)
0.51
" The efficacy of MMF as an immunosuppressant and long-term safety in cats of this dosage regimen is unknown."(
Abrams, G; Adolfsson, E; Agarwal, PK; Akkan, AG; Al Alhareth, NS; Alves, VGL; Armentano, R; Bahroos, E; Baig, M; Baldridge, KK; Barman, S; Bartolucci, C; Basit, A; Bertoli, SV; Bian, L; Bigatti, G; Bobenko, AI; Boix, PP; Bokulic, T; Bolink, HJ; Borowiec, J; Bulski, W; Burciaga, J; Butt, NS; Cai, AL; Campos, AM; Cao, G; Cao, Y; Čapo, I; Caruso, ML; Chao, CT; Cheatum, CM; Chelminski, K; Chen, AJW; Chen, C; Chen, CH; Chen, D; Chen, G; Chen, H; Chen, LH; Chen, R; Chen, RX; Chen, X; Cherdtrakulkiat, R; Chirvony, VS; Cho, JG; Chu, K; Ciurlino, D; Coletta, S; Contaldo, G; Crispi, F; Cui, JF; D'Esposito, M; de Biase, S; Demir, B; Deng, W; Deng, Z; Di Pinto, F; Domenech-Ximenos, B; Dong, G; Drácz, L; Du, XJ; Duan, LJ; Duan, Y; Ekendahl, D; Fan, W; Fang, L; Feng, C; Followill, DS; Foreman, SC; Fortunato, G; Frew, R; Fu, M; Gaál, V; Ganzevoort, W; Gao, DM; Gao, X; Gao, ZW; Garcia-Alvarez, A; Garza, MS; Gauthier, L; Gazzaz, ZJ; Ge, RS; Geng, Y; Genovesi, S; Geoffroy, V; Georg, D; Gigli, GL; Gong, J; Gong, Q; Groeneveld, J; Guerra, V; Guo, Q; Guo, X; Güttinger, R; Guyo, U; Haldar, J; Han, DS; Han, S; Hao, W; Hayman, A; He, D; Heidari, A; Heller, S; Ho, CT; Ho, SL; Hong, SN; Hou, YJ; Hu, D; Hu, X; Hu, ZY; Huang, JW; Huang, KC; Huang, Q; Huang, T; Hwang, JK; Izewska, J; Jablonski, CL; Jameel, T; Jeong, HK; Ji, J; Jia, Z; Jiang, W; Jiang, Y; Kalumpha, M; Kang, JH; Kazantsev, P; Kazemier, BM; Kebede, B; Khan, SA; Kiss, J; Kohen, A; Kolbenheyer, E; Konai, MM; Koniarova, I; Kornblith, E; Krawetz, RJ; Kreouzis, T; Kry, SF; Laepple, T; Lalošević, D; Lan, Y; Lawung, R; Lechner, W; Lee, KH; Lee, YH; Leonard, C; Li, C; Li, CF; Li, CM; Li, F; Li, J; Li, L; Li, S; Li, X; Li, Y; Li, YB; Li, Z; Liang, C; Lin, J; Lin, XH; Ling, M; Link, TM; Liu, HH; Liu, J; Liu, M; Liu, W; Liu, YP; Lou, H; Lu, G; Lu, M; Lun, SM; Ma, Z; Mackensen, A; Majumdar, S; Martineau, C; Martínez-Pastor, JP; McQuaid, JR; Mehrabian, H; Meng, Y; Miao, T; Miljković, D; Mo, J; Mohamed, HSH; Mohtadi, M; Mol, BWJ; Moosavi, L; Mosdósi, B; Nabu, S; Nava, E; Ni, L; Novakovic-Agopian, T; Nyamunda, BC; Nyul, Z; Önal, B; Özen, D; Özyazgan, S; Pajkrt, E; Palazon, F; Park, HW; Patai, Á; Patai, ÁV; Patzke, GR; Payette, G; Pedoia, V; Peelen, MJCS; Pellitteri, G; Peng, J; Perea, RJ; Pérez-Del-Rey, D; Popović, DJ; Popović, JK; Popović, KJ; Posecion, L; Povall, J; Prachayasittikul, S; Prachayasittikul, V; Prat-González, S; Qi, B; Qu, B; Rakshit, S; Ravelli, ACJ; Ren, ZG; Rivera, SM; Salo, P; Samaddar, S; Samper, JLA; Samy El Gendy, NM; Schmitt, N; Sekerbayev, KS; Sepúlveda-Martínez, Á; Sessolo, M; Severi, S; Sha, Y; Shen, FF; Shen, X; Shen, Y; Singh, P; Sinthupoom, N; Siri, S; Sitges, M; Slovak, JE; Solymosi, N; Song, H; Song, J; Song, M; Spingler, B; Stewart, I; Su, BL; Su, JF; Suming, L; Sun, JX; Tantimavanich, S; Tashkandi, JM; Taurbayev, TI; Tedgren, AC; Tenhunen, M; Thwaites, DI; Tibrewala, R; Tomsejm, M; Triana, CA; Vakira, FM; Valdez, M; Valente, M; Valentini, AM; Van de Winckel, A; van der Lee, R; Varga, F; Varga, M; Villarino, NF; Villemur, R; Vinatha, SP; Vincenti, A; Voskamp, BJ; Wang, B; Wang, C; Wang, H; Wang, HT; Wang, J; Wang, M; Wang, N; Wang, NC; Wang, Q; Wang, S; Wang, X; Wang, Y; Wang, Z; Wen, N; Wesolowska, P; Willis, M; Wu, C; Wu, D; Wu, L; Wu, X; Wu, Z; Xia, JM; Xia, X; Xia, Y; Xiao, J; Xiao, Y; Xie, CL; Xie, LM; Xie, S; Xing, Z; Xu, C; Xu, J; Yan, D; Yan, K; Yang, S; Yang, X; Yang, XW; Ye, M; Yin, Z; Yoon, N; Yoon, Y; Yu, H; Yu, K; Yu, ZY; Zhang, B; Zhang, GY; Zhang, H; Zhang, J; Zhang, M; Zhang, Q; Zhang, S; Zhang, W; Zhang, X; Zhang, Y; Zhang, YW; Zhang, Z; Zhao, D; Zhao, F; Zhao, P; Zhao, W; Zhao, Z; Zheng, C; Zhi, D; Zhou, C; Zhou, FY; Zhu, D; Zhu, J; Zhu, Q; Zinyama, NP; Zou, M; Zou, Z, 2019
)
0.51
"Extensive scientific and clinical evidence indicates that continuous delivery of a dopaminergic agent is associated with significant reduction in motor complications compared with intermittent oral dosing with the same agent."( Once-Weekly Subcutaneous Delivery of Polymer-Linked Rotigotine (SER-214) Provides Continuous Plasma Levels in Parkinson's Disease Patients.
Kieburtz, K; Moreadith, R; Olanow, CW; Standaert, DG; Viegas, TX, 2020
)
0.56
" Inappropriate dosing may precipitate or worsen delirium/hallucinations."( Rotigotine patch prescription in inpatients with Parkinson's disease: evaluating prescription accuracy, delirium and end-of-life use.
Ibrahim, H; Pooley, J; Richfield, EW; Woodward, Z, 2021
)
0.62
" Reports of oxidation and instability in a previous formulation indicate the need to evaluate impurities in both the raw material and pharmaceutical dosage forms of rotigotine to ensure product quality."( Rotigotine: A Review of Analytical Methods for the Raw Material, Pharmaceutical Formulations, and Its Impurities.
Cabral, LM; de Sousa, VP; Mendes, TC; Pinto, EC, 2021
)
0.62
"To assess: (1) symptom prevalence from the use of anticipatory medicines in patients with idiopathic Parkinson's disease, (2) the prescribing of antiparkinsonian medication at the end of life; and (3) the accuracy of conversion from oral antiparkinsonian medicines to transdermal rotigotine and any associations between rotigotine dosing and end-of-life symptoms."( Idiopathic Parkinson's Disease at the End of Life: A Retrospective Evaluation of Symptom Prevalence, Pharmacological Symptom Management and Transdermal Rotigotine Dosing.
Hindmarsh, J; Hindmarsh, S; Lee, M, 2021
)
0.62
"75]) taking one of three types of non-ergot extended-release DAs (rotigotine 32; pramipexole 44; ropinirole 36) with or without L-dopa (median daily total dosage of antiparkinsonian drugs 525."( Antiparkinsonian drugs as potent contributors to nocturnal sleep in patients with Parkinson's disease.
Ando, H; Doyu, M; Fujikake, A; Fukuoka, T; Hayashi, M; Ito, C; Izumi, M; Kawagashira, Y; Koide, H; Nakashima, K; Niwa, JI; Ogawa, K; Oiwa, H; Okada, Y; Taguchi, S; Tokui, K; Tsunoda, Y; Yasumoto, A; Yuasa, T, 2021
)
0.62
"For the whole PD patient cohort, the PDSS-2 sleep disturbance domain score and the scores for item 1 assessing sleep quality and item 8 assessing nocturia were positively correlated with daily total dosage of antiparkinsonian drugs and dosage of L-dopa, but not with the dosage of DAs."( Antiparkinsonian drugs as potent contributors to nocturnal sleep in patients with Parkinson's disease.
Ando, H; Doyu, M; Fujikake, A; Fukuoka, T; Hayashi, M; Ito, C; Izumi, M; Kawagashira, Y; Koide, H; Nakashima, K; Niwa, JI; Ogawa, K; Oiwa, H; Okada, Y; Taguchi, S; Tokui, K; Tsunoda, Y; Yasumoto, A; Yuasa, T, 2021
)
0.62
" Thus, adjusting both the total dosage of antiparkinsonian drugs and the dose-ratio of L-dopa might be key actions for alleviating poor sleep quality in patients with PD."( Antiparkinsonian drugs as potent contributors to nocturnal sleep in patients with Parkinson's disease.
Ando, H; Doyu, M; Fujikake, A; Fukuoka, T; Hayashi, M; Ito, C; Izumi, M; Kawagashira, Y; Koide, H; Nakashima, K; Niwa, JI; Ogawa, K; Oiwa, H; Okada, Y; Taguchi, S; Tokui, K; Tsunoda, Y; Yasumoto, A; Yuasa, T, 2021
)
0.62
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
tetralinsCompounds containing a tetralin skeleton.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (35)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
acetylcholinesteraseHomo sapiens (human)Potency19.81270.002541.796015,848.9004AID1347395; AID1347397; AID1347398
hypoxia-inducible factor 1 alpha subunitHomo sapiens (human)Potency26.83253.189029.884159.4836AID1224846
USP1 protein, partialHomo sapiens (human)Potency44.66840.031637.5844354.8130AID504865
TDP1 proteinHomo sapiens (human)Potency20.78590.000811.382244.6684AID686978; AID686979
GLI family zinc finger 3Homo sapiens (human)Potency28.22630.000714.592883.7951AID1259369; AID1259392
AR proteinHomo sapiens (human)Potency21.56660.000221.22318,912.5098AID1259243; AID1259247; AID743035; AID743036; AID743053
estrogen receptor 2 (ER beta)Homo sapiens (human)Potency30.04740.000657.913322,387.1992AID1259377; AID1259378
progesterone receptorHomo sapiens (human)Potency29.84930.000417.946075.1148AID1346795
cytochrome P450 family 3 subfamily A polypeptide 4Homo sapiens (human)Potency3.68810.01237.983543.2770AID1645841
estrogen-related nuclear receptor alphaHomo sapiens (human)Potency33.49150.001530.607315,848.9004AID1224848; AID1224849; AID1259403
estrogen nuclear receptor alphaHomo sapiens (human)Potency33.49150.000229.305416,493.5996AID1259244
GVesicular stomatitis virusPotency19.49710.01238.964839.8107AID1645842
cytochrome P450 2D6Homo sapiens (human)Potency0.18210.00108.379861.1304AID1645840
aryl hydrocarbon receptorHomo sapiens (human)Potency33.49150.000723.06741,258.9301AID743085
cytochrome P450, family 19, subfamily A, polypeptide 1, isoform CRA_aHomo sapiens (human)Potency26.60320.001723.839378.1014AID743083
thyroid stimulating hormone receptorHomo sapiens (human)Potency26.77970.001628.015177.1139AID1224843; AID1224895
nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (p105), isoform CRA_aHomo sapiens (human)Potency26.832519.739145.978464.9432AID1159509
v-jun sarcoma virus 17 oncogene homolog (avian)Homo sapiens (human)Potency19.12200.057821.109761.2679AID1159526; AID1159528
potassium voltage-gated channel subfamily H member 2 isoform dHomo sapiens (human)Potency1.00000.01789.637444.6684AID588834
thyroid hormone receptor beta isoform 2Rattus norvegicus (Norway rat)Potency29.84930.000323.4451159.6830AID743065; AID743067
peripheral myelin protein 22Rattus norvegicus (Norway rat)Potency4.05330.005612.367736.1254AID624032
Voltage-dependent calcium channel gamma-2 subunitMus musculus (house mouse)Potency33.49150.001557.789015,848.9004AID1259244
Interferon betaHomo sapiens (human)Potency30.70590.00339.158239.8107AID1347407; AID1645842
HLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)Potency19.49710.01238.964839.8107AID1645842
Cellular tumor antigen p53Homo sapiens (human)Potency33.49150.002319.595674.0614AID651631
Glutamate receptor 2Rattus norvegicus (Norway rat)Potency33.49150.001551.739315,848.9004AID1259244
Spike glycoproteinSevere acute respiratory syndrome-related coronavirusPotency39.81070.009610.525035.4813AID1479145
Inositol hexakisphosphate kinase 1Homo sapiens (human)Potency19.49710.01238.964839.8107AID1645842
cytochrome P450 2C9, partialHomo sapiens (human)Potency19.49710.01238.964839.8107AID1645842
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
D(2) dopamine receptorHomo sapiens (human)Ki0.00670.00000.651810.0000AID63088; AID64502; AID64635
D(2) dopamine receptorBos taurus (cattle)Ki0.01500.00000.58366.1000AID62329
D(4) dopamine receptorHomo sapiens (human)Ki0.05500.00000.436210.0000AID64006
D(3) dopamine receptorHomo sapiens (human)Ki0.00400.00000.602010.0000AID65118; AID65147
DBos taurus (cattle)Ki0.50000.00012.367610.0000AID63183
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
D(2) dopamine receptorHomo sapiens (human)EC50 (µMol)0.00310.00000.18743.9000AID1060973; AID1448003; AID1448005; AID1448008
D(1A) dopamine receptorHomo sapiens (human)EC50 (µMol)0.02800.00020.47959.5000AID1060975
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (317)

Processvia Protein(s)Taxonomy
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
positive regulation of T cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
adaptive immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-independentHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of T cell anergyHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
defense responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
detection of bacteriumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-12 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-6 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protection from natural killer cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
innate immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of dendritic cell differentiationHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class IbHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
negative regulation of cell population proliferationCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycleCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycle G2/M phase transitionCellular tumor antigen p53Homo sapiens (human)
DNA damage responseCellular tumor antigen p53Homo sapiens (human)
ER overload responseCellular tumor antigen p53Homo sapiens (human)
cellular response to glucose starvationCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
positive regulation of miRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
negative regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
mitophagyCellular tumor antigen p53Homo sapiens (human)
in utero embryonic developmentCellular tumor antigen p53Homo sapiens (human)
somitogenesisCellular tumor antigen p53Homo sapiens (human)
release of cytochrome c from mitochondriaCellular tumor antigen p53Homo sapiens (human)
hematopoietic progenitor cell differentiationCellular tumor antigen p53Homo sapiens (human)
T cell proliferation involved in immune responseCellular tumor antigen p53Homo sapiens (human)
B cell lineage commitmentCellular tumor antigen p53Homo sapiens (human)
T cell lineage commitmentCellular tumor antigen p53Homo sapiens (human)
response to ischemiaCellular tumor antigen p53Homo sapiens (human)
nucleotide-excision repairCellular tumor antigen p53Homo sapiens (human)
double-strand break repairCellular tumor antigen p53Homo sapiens (human)
regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
protein import into nucleusCellular tumor antigen p53Homo sapiens (human)
autophagyCellular tumor antigen p53Homo sapiens (human)
DNA damage responseCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrestCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediatorCellular tumor antigen p53Homo sapiens (human)
transforming growth factor beta receptor signaling pathwayCellular tumor antigen p53Homo sapiens (human)
Ras protein signal transductionCellular tumor antigen p53Homo sapiens (human)
gastrulationCellular tumor antigen p53Homo sapiens (human)
neuroblast proliferationCellular tumor antigen p53Homo sapiens (human)
negative regulation of neuroblast proliferationCellular tumor antigen p53Homo sapiens (human)
protein localizationCellular tumor antigen p53Homo sapiens (human)
negative regulation of DNA replicationCellular tumor antigen p53Homo sapiens (human)
negative regulation of cell population proliferationCellular tumor antigen p53Homo sapiens (human)
determination of adult lifespanCellular tumor antigen p53Homo sapiens (human)
mRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
rRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
response to salt stressCellular tumor antigen p53Homo sapiens (human)
response to inorganic substanceCellular tumor antigen p53Homo sapiens (human)
response to X-rayCellular tumor antigen p53Homo sapiens (human)
response to gamma radiationCellular tumor antigen p53Homo sapiens (human)
positive regulation of gene expressionCellular tumor antigen p53Homo sapiens (human)
cardiac muscle cell apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of cardiac muscle cell apoptotic processCellular tumor antigen p53Homo sapiens (human)
glial cell proliferationCellular tumor antigen p53Homo sapiens (human)
viral processCellular tumor antigen p53Homo sapiens (human)
glucose catabolic process to lactate via pyruvateCellular tumor antigen p53Homo sapiens (human)
cerebellum developmentCellular tumor antigen p53Homo sapiens (human)
negative regulation of cell growthCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
negative regulation of transforming growth factor beta receptor signaling pathwayCellular tumor antigen p53Homo sapiens (human)
mitotic G1 DNA damage checkpoint signalingCellular tumor antigen p53Homo sapiens (human)
negative regulation of telomere maintenance via telomeraseCellular tumor antigen p53Homo sapiens (human)
T cell differentiation in thymusCellular tumor antigen p53Homo sapiens (human)
tumor necrosis factor-mediated signaling pathwayCellular tumor antigen p53Homo sapiens (human)
regulation of tissue remodelingCellular tumor antigen p53Homo sapiens (human)
cellular response to UVCellular tumor antigen p53Homo sapiens (human)
multicellular organism growthCellular tumor antigen p53Homo sapiens (human)
positive regulation of mitochondrial membrane permeabilityCellular tumor antigen p53Homo sapiens (human)
cellular response to glucose starvationCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
entrainment of circadian clock by photoperiodCellular tumor antigen p53Homo sapiens (human)
mitochondrial DNA repairCellular tumor antigen p53Homo sapiens (human)
regulation of DNA damage response, signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of neuron apoptotic processCellular tumor antigen p53Homo sapiens (human)
transcription initiation-coupled chromatin remodelingCellular tumor antigen p53Homo sapiens (human)
negative regulation of proteolysisCellular tumor antigen p53Homo sapiens (human)
negative regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
positive regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
positive regulation of RNA polymerase II transcription preinitiation complex assemblyCellular tumor antigen p53Homo sapiens (human)
positive regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
response to antibioticCellular tumor antigen p53Homo sapiens (human)
fibroblast proliferationCellular tumor antigen p53Homo sapiens (human)
negative regulation of fibroblast proliferationCellular tumor antigen p53Homo sapiens (human)
circadian behaviorCellular tumor antigen p53Homo sapiens (human)
bone marrow developmentCellular tumor antigen p53Homo sapiens (human)
embryonic organ developmentCellular tumor antigen p53Homo sapiens (human)
positive regulation of peptidyl-tyrosine phosphorylationCellular tumor antigen p53Homo sapiens (human)
protein stabilizationCellular tumor antigen p53Homo sapiens (human)
negative regulation of helicase activityCellular tumor antigen p53Homo sapiens (human)
protein tetramerizationCellular tumor antigen p53Homo sapiens (human)
chromosome organizationCellular tumor antigen p53Homo sapiens (human)
neuron apoptotic processCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycleCellular tumor antigen p53Homo sapiens (human)
hematopoietic stem cell differentiationCellular tumor antigen p53Homo sapiens (human)
negative regulation of glial cell proliferationCellular tumor antigen p53Homo sapiens (human)
type II interferon-mediated signaling pathwayCellular tumor antigen p53Homo sapiens (human)
cardiac septum morphogenesisCellular tumor antigen p53Homo sapiens (human)
positive regulation of programmed necrotic cell deathCellular tumor antigen p53Homo sapiens (human)
protein-containing complex assemblyCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stressCellular tumor antigen p53Homo sapiens (human)
thymocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of thymocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
necroptotic processCellular tumor antigen p53Homo sapiens (human)
cellular response to hypoxiaCellular tumor antigen p53Homo sapiens (human)
cellular response to xenobiotic stimulusCellular tumor antigen p53Homo sapiens (human)
cellular response to ionizing radiationCellular tumor antigen p53Homo sapiens (human)
cellular response to gamma radiationCellular tumor antigen p53Homo sapiens (human)
cellular response to UV-CCellular tumor antigen p53Homo sapiens (human)
stem cell proliferationCellular tumor antigen p53Homo sapiens (human)
signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
cellular response to actinomycin DCellular tumor antigen p53Homo sapiens (human)
positive regulation of release of cytochrome c from mitochondriaCellular tumor antigen p53Homo sapiens (human)
cellular senescenceCellular tumor antigen p53Homo sapiens (human)
replicative senescenceCellular tumor antigen p53Homo sapiens (human)
oxidative stress-induced premature senescenceCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathwayCellular tumor antigen p53Homo sapiens (human)
oligodendrocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of execution phase of apoptosisCellular tumor antigen p53Homo sapiens (human)
negative regulation of mitophagyCellular tumor antigen p53Homo sapiens (human)
regulation of mitochondrial membrane permeability involved in apoptotic processCellular tumor antigen p53Homo sapiens (human)
regulation of intrinsic apoptotic signaling pathway by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of miRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
negative regulation of G1 to G0 transitionCellular tumor antigen p53Homo sapiens (human)
negative regulation of miRNA processingCellular tumor antigen p53Homo sapiens (human)
negative regulation of glucose catabolic process to lactate via pyruvateCellular tumor antigen p53Homo sapiens (human)
negative regulation of pentose-phosphate shuntCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to hypoxiaCellular tumor antigen p53Homo sapiens (human)
regulation of fibroblast apoptotic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of stem cell proliferationCellular tumor antigen p53Homo sapiens (human)
positive regulation of cellular senescenceCellular tumor antigen p53Homo sapiens (human)
positive regulation of intrinsic apoptotic signaling pathwayCellular tumor antigen p53Homo sapiens (human)
phospholipase C-activating dopamine receptor signaling pathwayD(2) dopamine receptorHomo sapiens (human)
temperature homeostasisD(2) dopamine receptorHomo sapiens (human)
response to hypoxiaD(2) dopamine receptorHomo sapiens (human)
negative regulation of protein phosphorylationD(2) dopamine receptorHomo sapiens (human)
response to amphetamineD(2) dopamine receptorHomo sapiens (human)
nervous system process involved in regulation of systemic arterial blood pressureD(2) dopamine receptorHomo sapiens (human)
regulation of heart rateD(2) dopamine receptorHomo sapiens (human)
regulation of sodium ion transportD(2) dopamine receptorHomo sapiens (human)
G protein-coupled receptor internalizationD(2) dopamine receptorHomo sapiens (human)
positive regulation of neuroblast proliferationD(2) dopamine receptorHomo sapiens (human)
positive regulation of receptor internalizationD(2) dopamine receptorHomo sapiens (human)
autophagyD(2) dopamine receptorHomo sapiens (human)
adenylate cyclase-inhibiting dopamine receptor signaling pathwayD(2) dopamine receptorHomo sapiens (human)
neuron-neuron synaptic transmissionD(2) dopamine receptorHomo sapiens (human)
neuroblast proliferationD(2) dopamine receptorHomo sapiens (human)
axonogenesisD(2) dopamine receptorHomo sapiens (human)
synapse assemblyD(2) dopamine receptorHomo sapiens (human)
sensory perception of smellD(2) dopamine receptorHomo sapiens (human)
long-term memoryD(2) dopamine receptorHomo sapiens (human)
grooming behaviorD(2) dopamine receptorHomo sapiens (human)
locomotory behaviorD(2) dopamine receptorHomo sapiens (human)
adult walking behaviorD(2) dopamine receptorHomo sapiens (human)
protein localizationD(2) dopamine receptorHomo sapiens (human)
negative regulation of cell population proliferationD(2) dopamine receptorHomo sapiens (human)
associative learningD(2) dopamine receptorHomo sapiens (human)
visual learningD(2) dopamine receptorHomo sapiens (human)
response to xenobiotic stimulusD(2) dopamine receptorHomo sapiens (human)
response to light stimulusD(2) dopamine receptorHomo sapiens (human)
response to toxic substanceD(2) dopamine receptorHomo sapiens (human)
response to iron ionD(2) dopamine receptorHomo sapiens (human)
response to inactivityD(2) dopamine receptorHomo sapiens (human)
Wnt signaling pathwayD(2) dopamine receptorHomo sapiens (human)
striatum developmentD(2) dopamine receptorHomo sapiens (human)
orbitofrontal cortex developmentD(2) dopamine receptorHomo sapiens (human)
cerebral cortex GABAergic interneuron migrationD(2) dopamine receptorHomo sapiens (human)
adenohypophysis developmentD(2) dopamine receptorHomo sapiens (human)
negative regulation of cell migrationD(2) dopamine receptorHomo sapiens (human)
peristalsisD(2) dopamine receptorHomo sapiens (human)
auditory behaviorD(2) dopamine receptorHomo sapiens (human)
regulation of synaptic transmission, GABAergicD(2) dopamine receptorHomo sapiens (human)
positive regulation of cytokinesisD(2) dopamine receptorHomo sapiens (human)
circadian regulation of gene expressionD(2) dopamine receptorHomo sapiens (human)
negative regulation of dopamine secretionD(2) dopamine receptorHomo sapiens (human)
response to histamineD(2) dopamine receptorHomo sapiens (human)
response to nicotineD(2) dopamine receptorHomo sapiens (human)
positive regulation of urine volumeD(2) dopamine receptorHomo sapiens (human)
positive regulation of renal sodium excretionD(2) dopamine receptorHomo sapiens (human)
positive regulation of multicellular organism growthD(2) dopamine receptorHomo sapiens (human)
response to cocaineD(2) dopamine receptorHomo sapiens (human)
negative regulation of circadian sleep/wake cycle, sleepD(2) dopamine receptorHomo sapiens (human)
dopamine metabolic processD(2) dopamine receptorHomo sapiens (human)
drinking behaviorD(2) dopamine receptorHomo sapiens (human)
regulation of potassium ion transportD(2) dopamine receptorHomo sapiens (human)
response to morphineD(2) dopamine receptorHomo sapiens (human)
pigmentationD(2) dopamine receptorHomo sapiens (human)
phosphatidylinositol 3-kinase/protein kinase B signal transductionD(2) dopamine receptorHomo sapiens (human)
positive regulation of G protein-coupled receptor signaling pathwayD(2) dopamine receptorHomo sapiens (human)
negative regulation of blood pressureD(2) dopamine receptorHomo sapiens (human)
negative regulation of innate immune responseD(2) dopamine receptorHomo sapiens (human)
positive regulation of transcription by RNA polymerase IID(2) dopamine receptorHomo sapiens (human)
negative regulation of insulin secretionD(2) dopamine receptorHomo sapiens (human)
acid secretionD(2) dopamine receptorHomo sapiens (human)
behavioral response to cocaineD(2) dopamine receptorHomo sapiens (human)
behavioral response to ethanolD(2) dopamine receptorHomo sapiens (human)
regulation of long-term neuronal synaptic plasticityD(2) dopamine receptorHomo sapiens (human)
response to axon injuryD(2) dopamine receptorHomo sapiens (human)
branching morphogenesis of a nerveD(2) dopamine receptorHomo sapiens (human)
arachidonic acid secretionD(2) dopamine receptorHomo sapiens (human)
epithelial cell proliferationD(2) dopamine receptorHomo sapiens (human)
negative regulation of epithelial cell proliferationD(2) dopamine receptorHomo sapiens (human)
negative regulation of protein secretionD(2) dopamine receptorHomo sapiens (human)
release of sequestered calcium ion into cytosolD(2) dopamine receptorHomo sapiens (human)
dopamine uptake involved in synaptic transmissionD(2) dopamine receptorHomo sapiens (human)
regulation of dopamine uptake involved in synaptic transmissionD(2) dopamine receptorHomo sapiens (human)
positive regulation of dopamine uptake involved in synaptic transmissionD(2) dopamine receptorHomo sapiens (human)
regulation of synapse structural plasticityD(2) dopamine receptorHomo sapiens (human)
negative regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionD(2) dopamine receptorHomo sapiens (human)
negative regulation of synaptic transmission, glutamatergicD(2) dopamine receptorHomo sapiens (human)
excitatory postsynaptic potentialD(2) dopamine receptorHomo sapiens (human)
positive regulation of growth hormone secretionD(2) dopamine receptorHomo sapiens (human)
prepulse inhibitionD(2) dopamine receptorHomo sapiens (human)
negative regulation of dopamine receptor signaling pathwayD(2) dopamine receptorHomo sapiens (human)
positive regulation of ERK1 and ERK2 cascadeD(2) dopamine receptorHomo sapiens (human)
regulation of locomotion involved in locomotory behaviorD(2) dopamine receptorHomo sapiens (human)
postsynaptic modulation of chemical synaptic transmissionD(2) dopamine receptorHomo sapiens (human)
presynaptic modulation of chemical synaptic transmissionD(2) dopamine receptorHomo sapiens (human)
negative regulation of cellular response to hypoxiaD(2) dopamine receptorHomo sapiens (human)
positive regulation of glial cell-derived neurotrophic factor productionD(2) dopamine receptorHomo sapiens (human)
positive regulation of long-term synaptic potentiationD(2) dopamine receptorHomo sapiens (human)
hyaloid vascular plexus regressionD(2) dopamine receptorHomo sapiens (human)
negative regulation of neuron migrationD(2) dopamine receptorHomo sapiens (human)
negative regulation of cytosolic calcium ion concentrationD(2) dopamine receptorHomo sapiens (human)
regulation of dopamine secretionD(2) dopamine receptorHomo sapiens (human)
negative regulation of adenylate cyclase activityD(2) dopamine receptorHomo sapiens (human)
phospholipase C-activating dopamine receptor signaling pathwayD(2) dopamine receptorHomo sapiens (human)
negative regulation of voltage-gated calcium channel activityD(2) dopamine receptorHomo sapiens (human)
positive regulation of MAPK cascadeD(2) dopamine receptorHomo sapiens (human)
adenylate cyclase-activating adrenergic receptor signaling pathwayD(2) dopamine receptorHomo sapiens (human)
synaptic transmission, dopaminergicD(2) dopamine receptorBos taurus (cattle)
negative regulation of prolactin secretionD(2) dopamine receptorBos taurus (cattle)
negative regulation of lactationD(2) dopamine receptorBos taurus (cattle)
positive regulation of mammary gland involutionD(2) dopamine receptorBos taurus (cattle)
hyaloid vascular plexus regressionD(2) dopamine receptorBos taurus (cattle)
temperature homeostasisD(1A) dopamine receptorHomo sapiens (human)
conditioned taste aversionD(1A) dopamine receptorHomo sapiens (human)
behavioral fear responseD(1A) dopamine receptorHomo sapiens (human)
regulation of protein phosphorylationD(1A) dopamine receptorHomo sapiens (human)
synaptic transmission, dopaminergicD(1A) dopamine receptorHomo sapiens (human)
response to amphetamineD(1A) dopamine receptorHomo sapiens (human)
protein import into nucleusD(1A) dopamine receptorHomo sapiens (human)
G protein-coupled receptor signaling pathway, coupled to cyclic nucleotide second messengerD(1A) dopamine receptorHomo sapiens (human)
adenylate cyclase-activating G protein-coupled receptor signaling pathwayD(1A) dopamine receptorHomo sapiens (human)
activation of adenylate cyclase activityD(1A) dopamine receptorHomo sapiens (human)
adenylate cyclase-activating dopamine receptor signaling pathwayD(1A) dopamine receptorHomo sapiens (human)
synapse assemblyD(1A) dopamine receptorHomo sapiens (human)
memoryD(1A) dopamine receptorHomo sapiens (human)
mating behaviorD(1A) dopamine receptorHomo sapiens (human)
grooming behaviorD(1A) dopamine receptorHomo sapiens (human)
adult walking behaviorD(1A) dopamine receptorHomo sapiens (human)
visual learningD(1A) dopamine receptorHomo sapiens (human)
response to xenobiotic stimulusD(1A) dopamine receptorHomo sapiens (human)
astrocyte developmentD(1A) dopamine receptorHomo sapiens (human)
dopamine transportD(1A) dopamine receptorHomo sapiens (human)
transmission of nerve impulseD(1A) dopamine receptorHomo sapiens (human)
neuronal action potentialD(1A) dopamine receptorHomo sapiens (human)
dentate gyrus developmentD(1A) dopamine receptorHomo sapiens (human)
striatum developmentD(1A) dopamine receptorHomo sapiens (human)
cerebral cortex GABAergic interneuron migrationD(1A) dopamine receptorHomo sapiens (human)
positive regulation of cell migrationD(1A) dopamine receptorHomo sapiens (human)
peristalsisD(1A) dopamine receptorHomo sapiens (human)
operant conditioningD(1A) dopamine receptorHomo sapiens (human)
synaptic transmission, glutamatergicD(1A) dopamine receptorHomo sapiens (human)
regulation of dopamine metabolic processD(1A) dopamine receptorHomo sapiens (human)
vasodilationD(1A) dopamine receptorHomo sapiens (human)
dopamine metabolic processD(1A) dopamine receptorHomo sapiens (human)
maternal behaviorD(1A) dopamine receptorHomo sapiens (human)
positive regulation of potassium ion transportD(1A) dopamine receptorHomo sapiens (human)
glucose importD(1A) dopamine receptorHomo sapiens (human)
habituationD(1A) dopamine receptorHomo sapiens (human)
sensitizationD(1A) dopamine receptorHomo sapiens (human)
behavioral response to cocaineD(1A) dopamine receptorHomo sapiens (human)
positive regulation of release of sequestered calcium ion into cytosolD(1A) dopamine receptorHomo sapiens (human)
regulation of dopamine uptake involved in synaptic transmissionD(1A) dopamine receptorHomo sapiens (human)
positive regulation of synaptic transmission, glutamatergicD(1A) dopamine receptorHomo sapiens (human)
prepulse inhibitionD(1A) dopamine receptorHomo sapiens (human)
phospholipase C-activating dopamine receptor signaling pathwayD(1A) dopamine receptorHomo sapiens (human)
long-term synaptic potentiationD(1A) dopamine receptorHomo sapiens (human)
long-term synaptic depressionD(1A) dopamine receptorHomo sapiens (human)
cellular response to catecholamine stimulusD(1A) dopamine receptorHomo sapiens (human)
modification of postsynaptic structureD(1A) dopamine receptorHomo sapiens (human)
presynaptic modulation of chemical synaptic transmissionD(1A) dopamine receptorHomo sapiens (human)
positive regulation of neuron migrationD(1A) dopamine receptorHomo sapiens (human)
positive regulation of MAPK cascadeD(1A) dopamine receptorHomo sapiens (human)
adenylate cyclase-activating adrenergic receptor signaling pathwayD(1A) dopamine receptorHomo sapiens (human)
dopamine receptor signaling pathwayD(1A) dopamine receptorHomo sapiens (human)
positive regulation of MAP kinase activityD(4) dopamine receptorHomo sapiens (human)
behavioral fear responseD(4) dopamine receptorHomo sapiens (human)
synaptic transmission, dopaminergicD(4) dopamine receptorHomo sapiens (human)
response to amphetamineD(4) dopamine receptorHomo sapiens (human)
intracellular calcium ion homeostasisD(4) dopamine receptorHomo sapiens (human)
adenylate cyclase-inhibiting dopamine receptor signaling pathwayD(4) dopamine receptorHomo sapiens (human)
dopamine receptor signaling pathwayD(4) dopamine receptorHomo sapiens (human)
adult locomotory behaviorD(4) dopamine receptorHomo sapiens (human)
positive regulation of sodium:proton antiporter activityD(4) dopamine receptorHomo sapiens (human)
positive regulation of kinase activityD(4) dopamine receptorHomo sapiens (human)
response to histamineD(4) dopamine receptorHomo sapiens (human)
social behaviorD(4) dopamine receptorHomo sapiens (human)
regulation of dopamine metabolic processD(4) dopamine receptorHomo sapiens (human)
dopamine metabolic processD(4) dopamine receptorHomo sapiens (human)
fear responseD(4) dopamine receptorHomo sapiens (human)
regulation of circadian rhythmD(4) dopamine receptorHomo sapiens (human)
positive regulation of MAP kinase activityD(4) dopamine receptorHomo sapiens (human)
behavioral response to cocaineD(4) dopamine receptorHomo sapiens (human)
behavioral response to ethanolD(4) dopamine receptorHomo sapiens (human)
rhythmic processD(4) dopamine receptorHomo sapiens (human)
arachidonic acid secretionD(4) dopamine receptorHomo sapiens (human)
negative regulation of protein secretionD(4) dopamine receptorHomo sapiens (human)
positive regulation of dopamine uptake involved in synaptic transmissionD(4) dopamine receptorHomo sapiens (human)
inhibitory postsynaptic potentialD(4) dopamine receptorHomo sapiens (human)
regulation of postsynaptic neurotransmitter receptor internalizationD(4) dopamine receptorHomo sapiens (human)
negative regulation of voltage-gated calcium channel activityD(4) dopamine receptorHomo sapiens (human)
adenylate cyclase-inhibiting serotonin receptor signaling pathwayD(4) dopamine receptorHomo sapiens (human)
G protein-coupled receptor signaling pathway, coupled to cyclic nucleotide second messengerD(4) dopamine receptorHomo sapiens (human)
chemical synaptic transmissionD(4) dopamine receptorHomo sapiens (human)
response to ethanolD(3) dopamine receptorHomo sapiens (human)
synaptic transmission, dopaminergicD(3) dopamine receptorHomo sapiens (human)
G protein-coupled receptor internalizationD(3) dopamine receptorHomo sapiens (human)
intracellular calcium ion homeostasisD(3) dopamine receptorHomo sapiens (human)
G protein-coupled receptor signaling pathwayD(3) dopamine receptorHomo sapiens (human)
adenylate cyclase-activating dopamine receptor signaling pathwayD(3) dopamine receptorHomo sapiens (human)
adenylate cyclase-inhibiting dopamine receptor signaling pathwayD(3) dopamine receptorHomo sapiens (human)
learning or memoryD(3) dopamine receptorHomo sapiens (human)
learningD(3) dopamine receptorHomo sapiens (human)
locomotory behaviorD(3) dopamine receptorHomo sapiens (human)
visual learningD(3) dopamine receptorHomo sapiens (human)
response to xenobiotic stimulusD(3) dopamine receptorHomo sapiens (human)
regulation of dopamine secretionD(3) dopamine receptorHomo sapiens (human)
positive regulation of cytokinesisD(3) dopamine receptorHomo sapiens (human)
circadian regulation of gene expressionD(3) dopamine receptorHomo sapiens (human)
response to histamineD(3) dopamine receptorHomo sapiens (human)
social behaviorD(3) dopamine receptorHomo sapiens (human)
response to cocaineD(3) dopamine receptorHomo sapiens (human)
dopamine metabolic processD(3) dopamine receptorHomo sapiens (human)
response to morphineD(3) dopamine receptorHomo sapiens (human)
negative regulation of blood pressureD(3) dopamine receptorHomo sapiens (human)
positive regulation of mitotic nuclear divisionD(3) dopamine receptorHomo sapiens (human)
acid secretionD(3) dopamine receptorHomo sapiens (human)
behavioral response to cocaineD(3) dopamine receptorHomo sapiens (human)
negative regulation of oligodendrocyte differentiationD(3) dopamine receptorHomo sapiens (human)
arachidonic acid secretionD(3) dopamine receptorHomo sapiens (human)
negative regulation of protein secretionD(3) dopamine receptorHomo sapiens (human)
musculoskeletal movement, spinal reflex actionD(3) dopamine receptorHomo sapiens (human)
regulation of dopamine uptake involved in synaptic transmissionD(3) dopamine receptorHomo sapiens (human)
negative regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionD(3) dopamine receptorHomo sapiens (human)
prepulse inhibitionD(3) dopamine receptorHomo sapiens (human)
positive regulation of dopamine receptor signaling pathwayD(3) dopamine receptorHomo sapiens (human)
negative regulation of adenylate cyclase activityD(3) dopamine receptorHomo sapiens (human)
adenylate cyclase-activating adrenergic receptor signaling pathwayD(3) dopamine receptorHomo sapiens (human)
negative regulation of voltage-gated calcium channel activityD(3) dopamine receptorHomo sapiens (human)
regulation of potassium ion transportD(3) dopamine receptorHomo sapiens (human)
phospholipase C-activating dopamine receptor signaling pathwayD(3) dopamine receptorHomo sapiens (human)
positive regulation of MAPK cascadeD(3) dopamine receptorHomo sapiens (human)
negative regulation of cytosolic calcium ion concentrationD(3) dopamine receptorHomo sapiens (human)
negative regulation of synaptic transmission, glutamatergicD(3) dopamine receptorHomo sapiens (human)
inositol phosphate metabolic processInositol hexakisphosphate kinase 1Homo sapiens (human)
phosphatidylinositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
negative regulation of cold-induced thermogenesisInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
synaptic transmission, dopaminergicDBos taurus (cattle)
vasodilationDBos taurus (cattle)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (68)

Processvia Protein(s)Taxonomy
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
signaling receptor bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
peptide antigen bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein-folding chaperone bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
transcription cis-regulatory region bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription factor activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
cis-regulatory region sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
core promoter sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
TFIID-class transcription factor complex bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription repressor activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription activator activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
protease bindingCellular tumor antigen p53Homo sapiens (human)
p53 bindingCellular tumor antigen p53Homo sapiens (human)
DNA bindingCellular tumor antigen p53Homo sapiens (human)
chromatin bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription factor activityCellular tumor antigen p53Homo sapiens (human)
mRNA 3'-UTR bindingCellular tumor antigen p53Homo sapiens (human)
copper ion bindingCellular tumor antigen p53Homo sapiens (human)
protein bindingCellular tumor antigen p53Homo sapiens (human)
zinc ion bindingCellular tumor antigen p53Homo sapiens (human)
enzyme bindingCellular tumor antigen p53Homo sapiens (human)
receptor tyrosine kinase bindingCellular tumor antigen p53Homo sapiens (human)
ubiquitin protein ligase bindingCellular tumor antigen p53Homo sapiens (human)
histone deacetylase regulator activityCellular tumor antigen p53Homo sapiens (human)
ATP-dependent DNA/DNA annealing activityCellular tumor antigen p53Homo sapiens (human)
identical protein bindingCellular tumor antigen p53Homo sapiens (human)
histone deacetylase bindingCellular tumor antigen p53Homo sapiens (human)
protein heterodimerization activityCellular tumor antigen p53Homo sapiens (human)
protein-folding chaperone bindingCellular tumor antigen p53Homo sapiens (human)
protein phosphatase 2A bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II-specific DNA-binding transcription factor bindingCellular tumor antigen p53Homo sapiens (human)
14-3-3 protein bindingCellular tumor antigen p53Homo sapiens (human)
MDM2/MDM4 family protein bindingCellular tumor antigen p53Homo sapiens (human)
disordered domain specific bindingCellular tumor antigen p53Homo sapiens (human)
general transcription initiation factor bindingCellular tumor antigen p53Homo sapiens (human)
molecular function activator activityCellular tumor antigen p53Homo sapiens (human)
promoter-specific chromatin bindingCellular tumor antigen p53Homo sapiens (human)
dopamine neurotransmitter receptor activity, coupled via Gi/GoD(2) dopamine receptorHomo sapiens (human)
G-protein alpha-subunit bindingD(2) dopamine receptorHomo sapiens (human)
protein bindingD(2) dopamine receptorHomo sapiens (human)
heterotrimeric G-protein bindingD(2) dopamine receptorHomo sapiens (human)
dopamine bindingD(2) dopamine receptorHomo sapiens (human)
ionotropic glutamate receptor bindingD(2) dopamine receptorHomo sapiens (human)
identical protein bindingD(2) dopamine receptorHomo sapiens (human)
heterocyclic compound bindingD(2) dopamine receptorHomo sapiens (human)
G protein-coupled receptor activityD(2) dopamine receptorHomo sapiens (human)
dopamine neurotransmitter receptor activity, coupled via GsD(1A) dopamine receptorHomo sapiens (human)
G-protein alpha-subunit bindingD(1A) dopamine receptorHomo sapiens (human)
dopamine neurotransmitter receptor activityD(1A) dopamine receptorHomo sapiens (human)
protein bindingD(1A) dopamine receptorHomo sapiens (human)
heterotrimeric G-protein bindingD(1A) dopamine receptorHomo sapiens (human)
dopamine bindingD(1A) dopamine receptorHomo sapiens (human)
arrestin family protein bindingD(1A) dopamine receptorHomo sapiens (human)
G protein-coupled receptor activityD(1A) dopamine receptorHomo sapiens (human)
dopamine neurotransmitter receptor activity, coupled via Gi/GoD(4) dopamine receptorHomo sapiens (human)
dopamine neurotransmitter receptor activityD(4) dopamine receptorHomo sapiens (human)
protein bindingD(4) dopamine receptorHomo sapiens (human)
potassium channel regulator activityD(4) dopamine receptorHomo sapiens (human)
SH3 domain bindingD(4) dopamine receptorHomo sapiens (human)
dopamine bindingD(4) dopamine receptorHomo sapiens (human)
identical protein bindingD(4) dopamine receptorHomo sapiens (human)
metal ion bindingD(4) dopamine receptorHomo sapiens (human)
epinephrine bindingD(4) dopamine receptorHomo sapiens (human)
norepinephrine bindingD(4) dopamine receptorHomo sapiens (human)
G protein-coupled serotonin receptor activityD(4) dopamine receptorHomo sapiens (human)
neurotransmitter receptor activityD(4) dopamine receptorHomo sapiens (human)
serotonin bindingD(4) dopamine receptorHomo sapiens (human)
dopamine neurotransmitter receptor activity, coupled via Gi/GoD(3) dopamine receptorHomo sapiens (human)
protein bindingD(3) dopamine receptorHomo sapiens (human)
G protein-coupled receptor activityD(3) dopamine receptorHomo sapiens (human)
inositol-1,3,4,5,6-pentakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol heptakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
protein bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
ATP bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 1-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 3-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol 5-diphosphate pentakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol diphosphate tetrakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (59)

Processvia Protein(s)Taxonomy
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
Golgi membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
endoplasmic reticulumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
Golgi apparatusHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
cell surfaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
ER to Golgi transport vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
secretory granule membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
phagocytic vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
early endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
recycling endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular exosomeHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
lumenal side of endoplasmic reticulum membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
MHC class I protein complexHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular spaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
external side of plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
nuclear bodyCellular tumor antigen p53Homo sapiens (human)
nucleusCellular tumor antigen p53Homo sapiens (human)
nucleoplasmCellular tumor antigen p53Homo sapiens (human)
replication forkCellular tumor antigen p53Homo sapiens (human)
nucleolusCellular tumor antigen p53Homo sapiens (human)
cytoplasmCellular tumor antigen p53Homo sapiens (human)
mitochondrionCellular tumor antigen p53Homo sapiens (human)
mitochondrial matrixCellular tumor antigen p53Homo sapiens (human)
endoplasmic reticulumCellular tumor antigen p53Homo sapiens (human)
centrosomeCellular tumor antigen p53Homo sapiens (human)
cytosolCellular tumor antigen p53Homo sapiens (human)
nuclear matrixCellular tumor antigen p53Homo sapiens (human)
PML bodyCellular tumor antigen p53Homo sapiens (human)
transcription repressor complexCellular tumor antigen p53Homo sapiens (human)
site of double-strand breakCellular tumor antigen p53Homo sapiens (human)
germ cell nucleusCellular tumor antigen p53Homo sapiens (human)
chromatinCellular tumor antigen p53Homo sapiens (human)
transcription regulator complexCellular tumor antigen p53Homo sapiens (human)
protein-containing complexCellular tumor antigen p53Homo sapiens (human)
Golgi membraneD(2) dopamine receptorHomo sapiens (human)
acrosomal vesicleD(2) dopamine receptorHomo sapiens (human)
plasma membraneD(2) dopamine receptorHomo sapiens (human)
ciliumD(2) dopamine receptorHomo sapiens (human)
lateral plasma membraneD(2) dopamine receptorHomo sapiens (human)
endocytic vesicleD(2) dopamine receptorHomo sapiens (human)
axonD(2) dopamine receptorHomo sapiens (human)
dendriteD(2) dopamine receptorHomo sapiens (human)
synaptic vesicle membraneD(2) dopamine receptorHomo sapiens (human)
sperm flagellumD(2) dopamine receptorHomo sapiens (human)
dendritic spineD(2) dopamine receptorHomo sapiens (human)
perikaryonD(2) dopamine receptorHomo sapiens (human)
axon terminusD(2) dopamine receptorHomo sapiens (human)
postsynaptic membraneD(2) dopamine receptorHomo sapiens (human)
ciliary membraneD(2) dopamine receptorHomo sapiens (human)
non-motile ciliumD(2) dopamine receptorHomo sapiens (human)
dopaminergic synapseD(2) dopamine receptorHomo sapiens (human)
GABA-ergic synapseD(2) dopamine receptorHomo sapiens (human)
G protein-coupled receptor complexD(2) dopamine receptorHomo sapiens (human)
glutamatergic synapseD(2) dopamine receptorHomo sapiens (human)
presynaptic membraneD(2) dopamine receptorHomo sapiens (human)
plasma membraneD(2) dopamine receptorHomo sapiens (human)
plasma membraneGlutamate receptor 2Rattus norvegicus (Norway rat)
Golgi membraneD(2) dopamine receptorBos taurus (cattle)
nucleusD(1A) dopamine receptorHomo sapiens (human)
endoplasmic reticulum membraneD(1A) dopamine receptorHomo sapiens (human)
plasma membraneD(1A) dopamine receptorHomo sapiens (human)
ciliumD(1A) dopamine receptorHomo sapiens (human)
presynaptic membraneD(1A) dopamine receptorHomo sapiens (human)
dendritic spineD(1A) dopamine receptorHomo sapiens (human)
postsynaptic membraneD(1A) dopamine receptorHomo sapiens (human)
ciliary membraneD(1A) dopamine receptorHomo sapiens (human)
non-motile ciliumD(1A) dopamine receptorHomo sapiens (human)
glutamatergic synapseD(1A) dopamine receptorHomo sapiens (human)
GABA-ergic synapseD(1A) dopamine receptorHomo sapiens (human)
G protein-coupled receptor complexD(1A) dopamine receptorHomo sapiens (human)
plasma membraneD(1A) dopamine receptorHomo sapiens (human)
centrosomeD(4) dopamine receptorHomo sapiens (human)
plasma membraneD(4) dopamine receptorHomo sapiens (human)
membraneD(4) dopamine receptorHomo sapiens (human)
postsynapseD(4) dopamine receptorHomo sapiens (human)
glutamatergic synapseD(4) dopamine receptorHomo sapiens (human)
plasma membraneD(4) dopamine receptorHomo sapiens (human)
dendriteD(4) dopamine receptorHomo sapiens (human)
plasma membraneD(3) dopamine receptorHomo sapiens (human)
synapseD(3) dopamine receptorHomo sapiens (human)
plasma membraneD(3) dopamine receptorHomo sapiens (human)
virion membraneSpike glycoproteinSevere acute respiratory syndrome-related coronavirus
fibrillar centerInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
cytosolInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleusInositol hexakisphosphate kinase 1Homo sapiens (human)
cytoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
endoplasmic reticulum membraneDBos taurus (cattle)
dendritic spineDBos taurus (cattle)
ciliary membraneDBos taurus (cattle)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (71)

Assay IDTitleYearJournalArticle
AID504749qHTS profiling for inhibitors of Plasmodium falciparum proliferation2011Science (New York, N.Y.), Aug-05, Volume: 333, Issue:6043
Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1448013Intrinsic clearance in Sprague-Dawley rat liver microsomes assessed per mg protein at 20 uM by HPLC analysis2017Journal of medicinal chemistry, 06-08, Volume: 60, Issue:11
Hydroxy-Substituted Heteroarylpiperazines: Novel Scaffolds for β-Arrestin-Biased D
AID63183Binding affinity of compound for Dopamine receptor D1 using [3H]-SCH- 233902003Journal of medicinal chemistry, Feb-13, Volume: 46, Issue:4
Orally active analogues of the dopaminergic prodrug 6-(N,N-di-n-propylamino)-3,4,5,6,7,8-hexahydro-2H-naphthalen-1-one: synthesis and pharmacological activity.
AID1060965Bioavailability in rat at 0.5 mg/kg, iv and 1 mg/kg, po2014Bioorganic & medicinal chemistry, Jan-01, Volume: 22, Issue:1
Synthesis and SAR study of a novel series of dopamine receptor agonists.
AID1060969Intrinsic clearance in human liver microsomes at 1 uM in presence of NADPH2014Bioorganic & medicinal chemistry, Jan-01, Volume: 22, Issue:1
Synthesis and SAR study of a novel series of dopamine receptor agonists.
AID64502Binding affinity was evaluated by calculating competition for [3H]N-0437 binding on Dopamine receptor D2L of CHO K-1 cells1996Journal of medicinal chemistry, Oct-11, Volume: 39, Issue:21
Affinity for dopamine D2, D3, and D4 receptors of 2-aminotetralins. Relevance of D2 agonist binding for determination of receptor subtype selectivity.
AID756379Metabolic stability in Sprague-Dawley rat liver microsomes assessed as compound remaining at 0.05 mg/mL after 15 mins2013Journal of medicinal chemistry, Jun-27, Volume: 56, Issue:12
Functionally selective dopamine D2/D3 receptor agonists comprising an enyne moiety.
AID1448005Agonist activity at human D2S receptor expressed in HEK293T cell membranes coexpressing Galphao1 assessed as induction of nucleotide exchange preincubated for 30 mins followed by addition of [35S]GTPgammaS measured after 30 mins by [35S]GTPgammaS binding 2017Journal of medicinal chemistry, 06-08, Volume: 60, Issue:11
Hydroxy-Substituted Heteroarylpiperazines: Novel Scaffolds for β-Arrestin-Biased D
AID1060971Selectivity ratio of EC50 for human recombinant dopamine D1 receptor to EC50 for human dopamine D2 receptor2014Bioorganic & medicinal chemistry, Jan-01, Volume: 22, Issue:1
Synthesis and SAR study of a novel series of dopamine receptor agonists.
AID756376Metabolic stability in Sprague-Dawley rat liver microsomes assessed as compound remaining at 0.05 mg/mL after 60 mins2013Journal of medicinal chemistry, Jun-27, Volume: 56, Issue:12
Functionally selective dopamine D2/D3 receptor agonists comprising an enyne moiety.
AID63088In vitro binding affinity at human Dopamine receptor D2 expressed in CHO K1 cells was measured by its ability to displace [3H]- N-04372002Journal of medicinal chemistry, Jul-04, Volume: 45, Issue:14
Further characterization of structural requirements for ligands at the dopamine D(2) and D(3) receptor: exploring the thiophene moiety.
AID1448008Partial agonist activity at human D2SR expressed in HEK293T cells co-expressing (EA)beta-arrestin2 and GRK2 assessed as induction of beta-arrestin2 recruitment after 5 hrs by chemiluminescence assay2017Journal of medicinal chemistry, 06-08, Volume: 60, Issue:11
Hydroxy-Substituted Heteroarylpiperazines: Novel Scaffolds for β-Arrestin-Biased D
AID1448004Partial agonist activity at human D2SR expressed in HEK293T cells co-expressing (EA)beta-arrestin2 assessed as induction of beta-arrestin2 recruitment after 5 hrs by chemiluminescence assay relative to quinpirole2017Journal of medicinal chemistry, 06-08, Volume: 60, Issue:11
Hydroxy-Substituted Heteroarylpiperazines: Novel Scaffolds for β-Arrestin-Biased D
AID756377Metabolic stability in Sprague-Dawley rat liver microsomes assessed as compound remaining at 0.05 mg/mL after 45 mins2013Journal of medicinal chemistry, Jun-27, Volume: 56, Issue:12
Functionally selective dopamine D2/D3 receptor agonists comprising an enyne moiety.
AID65147In vitro binding affinity at human Dopamine receptor D3 expressed in CHO K1 cells was measured by its ability to displace [3H]spiperone2002Journal of medicinal chemistry, Jul-04, Volume: 45, Issue:14
Further characterization of structural requirements for ligands at the dopamine D(2) and D(3) receptor: exploring the thiophene moiety.
AID1060967Volume of distribution at steady state in rat at 0.5 mg/kg, iv and 1 mg/kg, po2014Bioorganic & medicinal chemistry, Jan-01, Volume: 22, Issue:1
Synthesis and SAR study of a novel series of dopamine receptor agonists.
AID1448012Half life in Sprague-Dawley rat liver microsomes at 20 uM by HPLC analysis2017Journal of medicinal chemistry, 06-08, Volume: 60, Issue:11
Hydroxy-Substituted Heteroarylpiperazines: Novel Scaffolds for β-Arrestin-Biased D
AID756378Metabolic stability in Sprague-Dawley rat liver microsomes assessed as compound remaining at 0.05 mg/mL after 30 mins2013Journal of medicinal chemistry, Jun-27, Volume: 56, Issue:12
Functionally selective dopamine D2/D3 receptor agonists comprising an enyne moiety.
AID1448009Partial agonist activity at human D2SR expressed in HEK293T cells co-expressing (EA)beta-arrestin2 and GRK2 assessed as induction of beta-arrestin2 recruitment after 5 hrs by chemiluminescence assay relative to quinpirole2017Journal of medicinal chemistry, 06-08, Volume: 60, Issue:11
Hydroxy-Substituted Heteroarylpiperazines: Novel Scaffolds for β-Arrestin-Biased D
AID1448011Metabolic stability in Sprague-Dawley rat liver microsomes at 20 uM measured after 15 mins by HPLC-based mass-spectrometry2017Journal of medicinal chemistry, 06-08, Volume: 60, Issue:11
Hydroxy-Substituted Heteroarylpiperazines: Novel Scaffolds for β-Arrestin-Biased D
AID1448003Partial agonist activity at human D2SR expressed in HEK293T cells co-expressing (EA)beta-arrestin2 assessed as induction of beta-arrestin2 recruitment after 5 hrs by chemiluminescence assay2017Journal of medicinal chemistry, 06-08, Volume: 60, Issue:11
Hydroxy-Substituted Heteroarylpiperazines: Novel Scaffolds for β-Arrestin-Biased D
AID1060973Agonist activity at human dopamine D2 receptor expressed in CHO cells assessed as increase of forskolin-induced cAMP production after 20 mins2014Bioorganic & medicinal chemistry, Jan-01, Volume: 22, Issue:1
Synthesis and SAR study of a novel series of dopamine receptor agonists.
AID1060968Plasma clearance in rat at 0.5 mg/kg, iv and 1 mg/kg, po2014Bioorganic & medicinal chemistry, Jan-01, Volume: 22, Issue:1
Synthesis and SAR study of a novel series of dopamine receptor agonists.
AID64635Binding affinity was evaluated by calculating competition for [3H]spiperone binding on Dopamine receptor D2L of CHO K-1 cells.1996Journal of medicinal chemistry, Oct-11, Volume: 39, Issue:21
Affinity for dopamine D2, D3, and D4 receptors of 2-aminotetralins. Relevance of D2 agonist binding for determination of receptor subtype selectivity.
AID1060966Half life in rat at 0.5 mg/kg, iv and 1 mg/kg, po2014Bioorganic & medicinal chemistry, Jan-01, Volume: 22, Issue:1
Synthesis and SAR study of a novel series of dopamine receptor agonists.
AID62329Binding affinity of compound for Dopamine receptor D2 using [3H]N-04372003Journal of medicinal chemistry, Feb-13, Volume: 46, Issue:4
Orally active analogues of the dopaminergic prodrug 6-(N,N-di-n-propylamino)-3,4,5,6,7,8-hexahydro-2H-naphthalen-1-one: synthesis and pharmacological activity.
AID64006Binding affinity was evaluated by calculating competition for [3H]spiperone binding on Dopamine receptor D4.2 of CHO K-1 cells.1996Journal of medicinal chemistry, Oct-11, Volume: 39, Issue:21
Affinity for dopamine D2, D3, and D4 receptors of 2-aminotetralins. Relevance of D2 agonist binding for determination of receptor subtype selectivity.
AID65118Binding affinity was evaluated by calculating competition for [3H]spiperone binding on Dopamine receptor D3 expressed on CHO K-1 cells.1996Journal of medicinal chemistry, Oct-11, Volume: 39, Issue:21
Affinity for dopamine D2, D3, and D4 receptors of 2-aminotetralins. Relevance of D2 agonist binding for determination of receptor subtype selectivity.
AID1060972Agonist activity at human dopamine D2 receptor expressed in CHO cells assessed as increase of forskolin-induced cAMP production after 20 mins relative to dopamine2014Bioorganic & medicinal chemistry, Jan-01, Volume: 22, Issue:1
Synthesis and SAR study of a novel series of dopamine receptor agonists.
AID1448006Agonist activity at human D2S receptor expressed in HEK293T cell membranes coexpressing Galphao1 assessed as induction of nucleotide exchange at 0.1 pM to 100 uM preincubated for 30 mins followed by addition of [35S]GTPgammaS measured after 30 mins by [352017Journal of medicinal chemistry, 06-08, Volume: 60, Issue:11
Hydroxy-Substituted Heteroarylpiperazines: Novel Scaffolds for β-Arrestin-Biased D
AID1060970Intrinsic clearance in human hepatocytes at 1 uM2014Bioorganic & medicinal chemistry, Jan-01, Volume: 22, Issue:1
Synthesis and SAR study of a novel series of dopamine receptor agonists.
AID1060975Agonist activity at human recombinant dopamine D1 receptor expressed in CHO cells assessed as cAMP production after 20 mins2014Bioorganic & medicinal chemistry, Jan-01, Volume: 22, Issue:1
Synthesis and SAR study of a novel series of dopamine receptor agonists.
AID1060974Agonist activity at human recombinant dopamine D1 receptor expressed in CHO cells assessed as cAMP production after 20 mins relative to dopamine2014Bioorganic & medicinal chemistry, Jan-01, Volume: 22, Issue:1
Synthesis and SAR study of a novel series of dopamine receptor agonists.
AID1345718Human D1 receptor (Dopamine receptors)1991Nature, Apr-18, Volume: 350, Issue:6319
Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1.
AID1345879Human D5 receptor (Dopamine receptors)1991Nature, Apr-18, Volume: 350, Issue:6319
Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1.
AID1345788Human D2 receptor (Dopamine receptors)2002Journal of medicinal chemistry, Jul-04, Volume: 45, Issue:14
Further characterization of structural requirements for ligands at the dopamine D(2) and D(3) receptor: exploring the thiophene moiety.
AID1345833Human D3 receptor (Dopamine receptors)2002Journal of medicinal chemistry, Jul-04, Volume: 45, Issue:14
Further characterization of structural requirements for ligands at the dopamine D(2) and D(3) receptor: exploring the thiophene moiety.
AID1345814Human D4 receptor (Dopamine receptors)1996Journal of medicinal chemistry, Oct-11, Volume: 39, Issue:21
Affinity for dopamine D2, D3, and D4 receptors of 2-aminotetralins. Relevance of D2 agonist binding for determination of receptor subtype selectivity.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (410)

TimeframeStudies, This Drug (%)All Drugs %
pre-199028 (6.83)18.7374
1990's53 (12.93)18.2507
2000's77 (18.78)29.6817
2010's205 (50.00)24.3611
2020's47 (11.46)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 8.73

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index8.73 (24.57)
Research Supply Index6.29 (2.92)
Research Growth Index5.02 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (8.73)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials95 (21.44%)5.53%
Reviews66 (14.90%)6.00%
Case Studies34 (7.67%)4.05%
Observational10 (2.26%)0.25%
Other238 (53.72%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]