Page last updated: 2024-12-06

mono-(2-ethylhexyl)phthalate

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

Mono-(2-ethylhexyl) phthalate (MEHP) is a synthetic compound commonly used as a plasticizer. It is synthesized by reacting phthalic anhydride with 2-ethylhexanol. MEHP is a colorless liquid with a slightly oily odor. It is widely used in the manufacture of polyvinyl chloride (PVC) products, such as toys, food packaging, and medical devices.

MEHP is a potential endocrine disruptor and has been linked to various health problems, including reproductive toxicity, developmental abnormalities, and metabolic disorders. Its effects on human health are a major concern, leading to extensive research on its potential toxicity and environmental fate. Its ubiquitous presence in the environment, particularly in water and soil, further emphasizes the need for continued research and monitoring. MEHP's potential to leach from PVC products into food and water poses a significant risk to human health, making it a subject of extensive studies on its fate and transport in various environmental compartments. The widespread use of MEHP in consumer products and its persistence in the environment have prompted regulatory bodies to establish limits on its concentration in certain products and to explore alternative plasticizers with reduced toxicity.'

mono-(2-ethylhexyl)phthalate: RN given refers to parent cpd [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

mono(2-ethylhexyl) phthalate : The mono(2-ethylhexyl) ester of benzene-1,2-dicarboxylic acid. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID20393
CHEMBL ID1867438
CHEBI ID17243
SCHEMBL ID472689
MeSH IDM0066715

Synonyms (80)

Synonym
mono(2-ethylhexyl) phthalate
(2-ethylhexyl) hydrogen phthalate
mono(2-ethylhexyl)phthalate
mono-2-ethylhexyl phthalate
mehp ,
phthalic acid, 2-ethylhexyl ester
2-ethylhexyl hydrogen phthalate
4376-20-9
1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester
2-([(2-ethylhexyl)oxy]carbonyl)benzoic acid
2-(2-ethylhexyloxycarbonyl)benzoic acid
CHEBI:17243 ,
mono-(2-ethylhexyl)phthalate
monoethylhexyl phthalate
NCGC00090773-01
bar 1
phthalic acid, mono-(2-ethylhexyl) ester
einecs 224-477-1
phthalate, mono(2-ethylhexyl)
ccris 1742
C03343
NCGC00090773-02
2-{[(2-ethylhexyl)oxy]carbonyl}benzoic acid
phthalic acid, mono-2-ethylhexyl ester
NCGC00090773-03
mono(ethylhexyl) phthalate
mono-(2-ethyl)hexyl phthalate
mono-(2-ethylhexyl) phthalate
2-(2-ethylhexoxycarbonyl)benzoic acid
phthalic acid monooctyl ester
rac mono(ethylhexyl) phthalate
rac mono(ethylhexyl) phthalate-d4
1,2-benzenedicarboxylic acid mono(2-ethylhexyl) ester
NCGC00090773-05
NCGC00090773-04
NCGC00090773-06
tox21_400076
dtxcid105680
dtxsid2025680 ,
cas-4376-20-9
2-[(2s)-2-ethylhexoxy]carbonylbenzoic acid
A826416
2-(((2-ethylhexyl)oxy)carbonyl)benzoic acid
phthalic acid mono-2-ethylhexyl ester
fu2ewb60rt ,
unii-fu2ewb60rt
CHEMBL1867438
FT-0600523
AKOS015902975
BRD-A18246003-001-01-1
SCHEMBL472689
2-([(2-ethylhexyl)oxy]carbonyl)benzoic acid #
DJDSLBVSSOQSLW-UHFFFAOYSA-N
CS-W019178
2-((2-(ethyl)hexyloxy)carbonyl)benzoic acid
1,2-benzenedicarboxylic acid, 1-(2-ethylhexyl) ester
phthalic acid, mono(2-ethylhexyl) ester
monoethylhexyl phthalic acid
phthalic acid mono-2-ethylhexyl ester, 97%
phthalic acid mono-2-ethylhexyl ester, aldrichcpr
mfcd00041500
phthalicacidmonoethylhexylester
monoethylhexyl phthalate (mehp)
phthalicacid,2-ethylhexylester
mono-ethylhexyl
1,2-benzenedicarboxylicacid,mono(2-ethylhexyl)ester
monoethylhexylphthalate
phthalic acid 1-hydrogen 2-(2-ethylhexyl) ester
mono-ethylhexylphthalate
phthalicacidmono-2-ethylexylester
phthalicacidmonoethylhexyl
phthalic acid hydrogen 1-(2-ethylhexyl) ester
2-((2-ethylhexyloxy)carbonyl)benzoic acid
2-(((2-ethylhexyl)oxy)carbonyl)benzoicacid
DS-16446
Q26841225
phthalic acid, mono-2-ethylhexyl ester 100 microg/ml in acetonitrile
HY-W018392
1276197-22-8
phthalic acid mono-2-ethylhexyl ester liquid

Research Excerpts

Toxicity

ExcerptReferenceRelevance
" Methyl clofenapate was not toxic up to a dose that produced precipitate, so cannot be directly compared with WY, which induced aberrations only at toxic dose levels."( The genetic toxicity of the peroxisome proliferator class of rodent hepatocarcinogen.
Armstrong, MJ; Ashby, J; Galloway, SM; Johnson, TE, 2000
)
0.31
" Three representative compounds, N-ethyl-N-nitrosourea (ENU), adriamycin (ADR), and mono-(2-ethylhexyl)phthalate (MEHP), toxic to different targets and known to affect germ cell development and impair fertility, were tested on PGCs in culture using three different experimental protocols."( A comparative study of cytotoxic effects of N-ethyl-N-nitrosourea, adriamycin, and mono-(2-ethylhexyl)phthalate on mouse primordial germ cells.
Ciccalese, R; De Felici, M; Iona, S; Klinger, FG; Nunziata, A; Sisti, R, 2002
)
0.76
" To evaluate the possible toxic liver risk resulting from exposure to DEHP and TOTM, isolated rat hepatocytes were incubated with either DEHP, TOTM, MEHP or their common metabolite (2-EH) for 3 hours."( Evaluation of the direct toxicity of trioctyltrimellitate (TOTM), di(2-ethylhexyl) phthalate (DEHP) and their hydrolysis products on isolated rat hepatocytes.
Brunet, C; Dine, T; Dupin-Spriet, T; Gressier, B; Kambia, K; Luyckx, M, 2004
)
0.32
" The objective of this study was to investigate the cytotoxicity and genotoxicity potentials of di(2-ethylhexyl)phthalate (DEHP), the most widely used phthalate and its primary toxic metabolite mono(2-ethylhexyl)phthalate (MEHP), and their effects on the antioxidant balance in the LNCaP human prostate adenocarcinoma cell line."( Protective effect of selenium supplementation on the genotoxicity of di(2-ethylhexyl)phthalate and mono(2-ethylhexyl)phthalate treatment in LNCaP cells.
De Rosa, V; Erkekoğlu, P; Favier, A; Giray, B; Hincal, F; Rachidi, W, 2010
)
0.36
"Mono-(2-ethylhexyl) phthalate (MEHP) is the most toxic metabolite of di-(2-ethylhexyl) phthalate (DEHP)."( Evaluation of ovarian toxicity of mono-(2-ethylhexyl) phthalate (MEHP) using cultured rat ovarian follicles.
Chihara, K; Fukuda, C; Funabashi, H; Inada, H; Kimura, J; Kunimatsu, T; Miyano, T; Miyawaki, I; Tateishi, Y; Yamashita, A, 2012
)
0.38
"Mono-(2-ethylhexyl) phthalate (MEHP), the metabolite of di-(2-ethylhexyl) phthalate (DEHP), was suspected to be toxic to human embryos."( Cytotoxic effects of mono-(2-ethylhexyl) phthalate on human embryonic stem cells.
Cai, XH; Chen, X; Liang, R; Lu, Q; Shen, H; Shi, C; Yu, WD, 2013
)
0.39
" In the current study, we addressed toxic effects of MEHP and DEHP on embryonic human kidney cells (HEK-293 cell line) and kidney tissue of rats, respectively."( The implication of mitochondrial dysfunction and mitochondrial oxidative damage in di (2-ethylhexyl) phthalate induced nephrotoxicity in both
Ashari, S; Dashti, A; Ghandadi, M; Ghassemi-Barghi, N; Karami, M; Mohammadi, H; Ranaee, M; Shokrzadeh, M, 2020
)
0.56
" The major and toxic metabolic derivative of DEHP, mono-2-ethylhexyl phthalate (MEHP), is capable of interfering with mitochondrial function, but its mechanism of action on mitophagy remains elusive."( Mono-2-ethylhexyl phthalate drives progression of PINK1-parkin-mediated mitophagy via increasing mitochondrial ROS to exacerbate cytotoxicity.
Héroux, P; Leng, J; Shen, HM; Wang, F; Wang, K; Wang, L; Wu, Y; Xia, D; Xu, J; Zhang, L; Zheng, F, 2021
)
0.62
"Considering that research of adverse effects of mono(2-ethylhexyl) phthalate (MEHP) and monobutyl phthalate (MBP), two key metabolites of the most common phthalates used as plasticisers in various daily-life products, has been scattered and limited, the aim of our study was to provide a more comprehensive analysis by focusing on major organ systems, including blood, liver, kidney, and pancreas in 66 male pubertal rats randomised into eleven groups of six."( Endocrine adverse effects of mono(2-ethylhexyl) phthalate and monobutyl phthalate in male pubertal rats.
Barlas, N; Karabulut, G, 2022
)
0.72

Pharmacokinetics

ExcerptReferenceRelevance
" Values of biological half-life and area under the concentration-time curve (AUC) of mono(2-ethylhexyl)phthalate, the main metabolite of DEHP, in testes after a single co-administration of DEHP (p."( Effects of co-administration of di(2-ethylhexyl)phthalate and testosterone on several parameters in the testis and pharmacokinetics of its mono-de-esterified metabolite.
Oishi, S, 1989
)
0.28
" The pharmacokinetic differences between these two species indicate that the tissues of the marmoset are exposed to a level of DEHP metabolites equivalent to the complete absorption of a dose of Ca."( Comparative pharmacokinetics and subacute toxicity of di(2-ethylhexyl) phthalate (DEHP) in rats and marmosets: extrapolation of effects in rodents to man.
Batten, PL; Bratt, H; Elcombe, CR; Jackson, SJ; Orton, TC; Pratt, IS; Rhodes, C, 1986
)
0.27
" Adjusted animal biomonitoring equivalents from chimeric mice studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model."( Human biofluid concentrations of mono(2-ethylhexyl)phthalate extrapolated from pharmacokinetics in chimeric mice with humanized liver administered with di(2-ethylhexyl)phthalate and physiologically based pharmacokinetic modeling.
Adachi, K; Murayama, N; Shimizu, M; Suemizu, H; Yamazaki, H, 2015
)
0.42

Compound-Compound Interactions

ExcerptReferenceRelevance
" This research illustrates how chimeric mice transplanted with human hepatocytes in combination with a simple PBPK model can assist evaluations of pharmacokinetics or toxicokinetics of the primary or secondary metabolites of DEHP."( Human biofluid concentrations of mono(2-ethylhexyl)phthalate extrapolated from pharmacokinetics in chimeric mice with humanized liver administered with di(2-ethylhexyl)phthalate and physiologically based pharmacokinetic modeling.
Adachi, K; Murayama, N; Shimizu, M; Suemizu, H; Yamazaki, H, 2015
)
0.42

Bioavailability

ExcerptReferenceRelevance
" These data indicate that the bioavailability of selenium is decreased by DEHP."( Selenium metabolism in isolated hepatocytes: inhibition of incorporation in proteins by mono(2-ethylhexyl)phthalate, a metabolite of the peroxisome proliferator di(2-ethylhexyl)phthalate.
Garberg, P; Högberg, J, 1991
)
0.28
" Hence, the low po systemic availability of DEHP may be largely attributed to presystemic hydrolysis of DEHP to MEHP in the gut, whereas slow and/or incomplete absorption is the likely cause of the poor bioavailability of DEHP after ip administration."( Effects of route of administration and repetitive dosing on the disposition kinetics of di(2-ethylhexyl) phthalate and its mono-de-esterified metabolite in rats.
Ermer, JC; Li, RC; Pollack, GM; Shen, DD, 1985
)
0.27
" MEHP seems to be well absorbed by the peritoneal membrane."( The fate of leached di(2-ethylhexyl)phthalate in patients undergoing CAPD treatment.
Fischer, FP; Kiefer, T; Kuhlmann, U; Mettang, T; Rettenmeier, AW; Thomas, S; Wodarz, R,
)
0.13
" The bioavailability of DEHP-D(4) was surprisingly high with an area under the concentration-time curve until 24h (AUC) amounting to 50% of that of free MEHP-D(4)."( Kinetics of di(2-ethylhexyl) phthalate (DEHP) and mono(2-ethylhexyl) phthalate in blood and of DEHP metabolites in urine of male volunteers after single ingestion of ring-deuterated DEHP.
Csanády, GA; Filser, JG; Fromme, H; Kessler, W; Klein, D; Numtip, W; Pütz, C; Seckin, E; Völkel, W, 2012
)
0.38
" These observations suggest that ROS generation by MEHP leads to activation of HSL and increase in STAR which, together, result in increased free-cholesterol bioavailability and progesterone formation."( Redox regulation of hormone sensitive lipase: Potential role in the mechanism of MEHP-induced stimulation of basal steroid synthesis in MA-10 Leydig cells.
Li, Y; Martinez-Arguelles, DB; Papadopoulos, V; Traore, K; Zaman, N; Zhou, C; Zirkin, B, 2019
)
0.51
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
" First of all, we verified that P80 promoted the bioavailability of MEHP-AF in the long-term and low-dose exposure of MEHP-AF with P80 as a result of increasing the intestinal absorption of MEHP-AF."( Food emulsifier polysorbate 80 promotes the intestinal absorption of mono-2-ethylhexyl phthalate by disturbing intestinal barrier.
Feng, QP; Hu, MY; Li, WJ; Wu, X; Xiang, SY; Yu, SQ; Yuan, YZ; Zhu, YT, 2021
)
0.62

Dosage Studied

ExcerptRelevanceReference
" Multiple dosing with DEHP (2."( Disposition of orally administered di-(2-ethylhexyl) phthalate and mono-(2-ethylhexyl) phthalate in the rat.
Belpaire, F; Teirlynck, OA, 1985
)
0.27
" In dose-response experiments trend of decreasing amount of DNA synthesis was observed, but no statistical differences were found."( The effects of mono-2-ethylhexyl phathalate, adriamycin and N-ethyl-N-nitrosourea on stage-specific apoptosis and DNA synthesis in the mouse spermatogenesis.
Hakovirta, H; Linderborg, J; Nikula, H; Parvinen, M; Suominen, JS; Toppari, J, 2003
)
0.32
" Using quantitative PCR (qPCR), the dose-response of 24 genes was determined after a single MEHP exposure of 10, 100, or 1000 mg/kg."( Testicular gene expression profiling following prepubertal rat mono-(2-ethylhexyl) phthalate exposure suggests a common initial genetic response at fetal and prepubertal ages.
Gaido, KW; Johnson, KJ; Lahousse, SA; Liu, D; Wallace, DG, 2006
)
0.33
" The present study investigates dose-response relationships for these classic Sertoli cell toxicants using histopathology endpoints."( Dose-dependent effects of sertoli cell toxicants 2,5-hexanedione, carbendazim, and mono-(2-ethylhexyl) phthalate in adult rat testis.
Boekelheide, K; Bryant, BH; Hall, SJ; Moffit, JS, 2007
)
0.34
" The bioassay was applied for a dose-response study of mono(2-ethylhexyl)phthalate (MEHP), a chemical known to disrupt several steroidogenic enzymes."( Steroidogenesis-disrupting compounds can be effectively studied for major fertility-related endpoints using in vitro cultured mouse follicles.
Lenie, S; Smitz, J, 2009
)
0.35
" Nevertheless, their path of action, dose-response character, and cellular target(s) within the fetal testis are not known."( Time- and dose-related effects of di-(2-ethylhexyl) phthalate and its main metabolites on the function of the rat fetal testis in vitro.
Angerer, J; Chagnon, MC; Chauvigné, F; Chevrier, C; Jégou, B; Lesné, L; Menuet, A; Regnier, JF, 2009
)
0.35
" MEHP notably up-regulated the expression of PTCH with a dose-response relationship in the presence of cyclopamine, which indicate that MEHP might target on the downstream components of Hh pathway and advance the progression of PCa through activating the Hh pathway."( Mono-2-ethyhexyl phthalate advancing the progression of prostate cancer through activating the hedgehog pathway in LNCaP cells.
Jianhui, W; Jiao, C; Qi, P; Xiu, W; Yan, Z; Yong, W; Yunhui, Z; Zuyue, S, 2016
)
0.43
" Overall, this study determined that the kinetics of the phthalate monoesters MEHP and MnBP after oral dosage are comparable to the properties of their diesters."( Kinetics of the phthalate metabolites mono-2-ethylhexyl phthalate (MEHP) and mono-n-butyl phthalate (MnBP) in male subjects after a single oral dose.
Fromme, H; Mittermeier, A; Völkel, W, 2016
)
0.43
" Dose-response relationships were determined in the parental AA8 cell line, its nucleotide repair-deficient UV5 and base repair-deficient EM9 subclones, and also in AS52 cells harboring the bacterial guanine-hypoxanthine phosphoribosyltransferase (gpt) gene and its derived AS52-XPD-knockdown and AS52-PARP-1-knockdown cells."( Acute exposure to DEHP metabolite, MEHP cause genotoxicity, mutagenesis and carcinogenicity in mammalian Chinese hamster ovary cells.
Chang, YJ; Chao, MW; Chuang, YC; Lin, PY; Tseng, CY, 2017
)
0.46
" Global and dose-response metabolomics tools were used to identify metabolic perturbations and sensitive markers associated with MEHP."( Dose-response mapping of MEHP exposure with metabolic changes of trophoblast cell and determination of sensitive markers.
Cao, R; Chen, J; Chen, Y; Chen, Z; Fang, Y; Liu, C; Wang, M; Zhang, H; Zhao, K; Zhou, M, 2023
)
0.91
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
phthalic acid monoesterA dicarboxylic acid monoester resulting from the formal condensation of an alcoholic or aromatic hydroxy group with just one of the two carboxy groups of phthalic acid.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (38)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
LuciferasePhotinus pyralis (common eastern firefly)Potency66.16600.007215.758889.3584AID624030
glp-1 receptor, partialHomo sapiens (human)Potency35.48130.01846.806014.1254AID624172
RAR-related orphan receptor gammaMus musculus (house mouse)Potency0.01240.006038.004119,952.5996AID1159521
SMAD family member 2Homo sapiens (human)Potency52.89580.173734.304761.8120AID1346859; AID1346924
GALC proteinHomo sapiens (human)Potency1.122028.183828.183828.1838AID1159614
SMAD family member 3Homo sapiens (human)Potency52.89580.173734.304761.8120AID1346859; AID1346924
GLI family zinc finger 3Homo sapiens (human)Potency1.75270.000714.592883.7951AID1259369
AR proteinHomo sapiens (human)Potency37.60150.000221.22318,912.5098AID1259243; AID1259381; AID743035; AID743036; AID743042; AID743063
estrogen receptor 2 (ER beta)Homo sapiens (human)Potency70.24000.000657.913322,387.1992AID1259377; AID1259378
nuclear receptor subfamily 1, group I, member 3Homo sapiens (human)Potency4.93980.001022.650876.6163AID1224838
progesterone receptorHomo sapiens (human)Potency46.67860.000417.946075.1148AID1346784; AID1346795
cytochrome P450 family 3 subfamily A polypeptide 4Homo sapiens (human)Potency32.27540.01237.983543.2770AID1645841
glucocorticoid receptor [Homo sapiens]Homo sapiens (human)Potency18.75330.000214.376460.0339AID588532; AID720691; AID720692
retinoic acid nuclear receptor alpha variant 1Homo sapiens (human)Potency0.13920.003041.611522,387.1992AID1159552
retinoid X nuclear receptor alphaHomo sapiens (human)Potency22.26910.000817.505159.3239AID1159527
estrogen-related nuclear receptor alphaHomo sapiens (human)Potency48.65970.001530.607315,848.9004AID1224820; AID1224841; AID1224848; AID1224849
farnesoid X nuclear receptorHomo sapiens (human)Potency62.21510.375827.485161.6524AID743220
pregnane X nuclear receptorHomo sapiens (human)Potency29.63580.005428.02631,258.9301AID1346982; AID720659
estrogen nuclear receptor alphaHomo sapiens (human)Potency35.19230.000229.305416,493.5996AID743069; AID743075; AID743078; AID743079
GVesicular stomatitis virusPotency3.62140.01238.964839.8107AID1645842
cytochrome P450 2D6Homo sapiens (human)Potency32.27540.00108.379861.1304AID1645840
peroxisome proliferator-activated receptor deltaHomo sapiens (human)Potency33.36810.001024.504861.6448AID743212; AID743215; AID743227
peroxisome proliferator activated receptor gammaHomo sapiens (human)Potency17.03500.001019.414170.9645AID588536; AID588537; AID743094; AID743140; AID743191
vitamin D (1,25- dihydroxyvitamin D3) receptorHomo sapiens (human)Potency0.49840.023723.228263.5986AID743222; AID743223
thyroid stimulating hormone receptorHomo sapiens (human)Potency0.22070.001628.015177.1139AID1259385
activating transcription factor 6Homo sapiens (human)Potency0.03530.143427.612159.8106AID1159516
thyrotropin-releasing hormone receptorHomo sapiens (human)Potency21.73060.154917.870243.6557AID1346877
v-jun sarcoma virus 17 oncogene homolog (avian)Homo sapiens (human)Potency4.44330.057821.109761.2679AID1159526
thyroid hormone receptor beta isoform 2Rattus norvegicus (Norway rat)Potency55.65070.000323.4451159.6830AID743065; AID743067
heat shock protein beta-1Homo sapiens (human)Potency49.85420.042027.378961.6448AID743210
nuclear factor NF-kappa-B p105 subunit isoform 1Homo sapiens (human)Potency56.23414.466824.832944.6684AID651749
nuclear factor erythroid 2-related factor 2 isoform 1Homo sapiens (human)Potency55.11110.000627.21521,122.0200AID651741; AID743202
Interferon betaHomo sapiens (human)Potency4.89840.00339.158239.8107AID1347407; AID1645842
HLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)Potency3.62140.01238.964839.8107AID1645842
Cellular tumor antigen p53Homo sapiens (human)Potency48.55770.002319.595674.0614AID651631
Peroxisome proliferator-activated receptor alphaHomo sapiens (human)Potency31.83260.015823.527344.6684AID651778
Inositol hexakisphosphate kinase 1Homo sapiens (human)Potency3.62140.01238.964839.8107AID1645842
cytochrome P450 2C9, partialHomo sapiens (human)Potency3.62140.01238.964839.8107AID1645842
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (214)

Processvia Protein(s)Taxonomy
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
positive regulation of T cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
adaptive immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-independentHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of T cell anergyHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
defense responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
detection of bacteriumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-12 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-6 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protection from natural killer cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
innate immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of dendritic cell differentiationHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class IbHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
negative regulation of cell population proliferationCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycleCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycle G2/M phase transitionCellular tumor antigen p53Homo sapiens (human)
DNA damage responseCellular tumor antigen p53Homo sapiens (human)
ER overload responseCellular tumor antigen p53Homo sapiens (human)
cellular response to glucose starvationCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
positive regulation of miRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
negative regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
mitophagyCellular tumor antigen p53Homo sapiens (human)
in utero embryonic developmentCellular tumor antigen p53Homo sapiens (human)
somitogenesisCellular tumor antigen p53Homo sapiens (human)
release of cytochrome c from mitochondriaCellular tumor antigen p53Homo sapiens (human)
hematopoietic progenitor cell differentiationCellular tumor antigen p53Homo sapiens (human)
T cell proliferation involved in immune responseCellular tumor antigen p53Homo sapiens (human)
B cell lineage commitmentCellular tumor antigen p53Homo sapiens (human)
T cell lineage commitmentCellular tumor antigen p53Homo sapiens (human)
response to ischemiaCellular tumor antigen p53Homo sapiens (human)
nucleotide-excision repairCellular tumor antigen p53Homo sapiens (human)
double-strand break repairCellular tumor antigen p53Homo sapiens (human)
regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
protein import into nucleusCellular tumor antigen p53Homo sapiens (human)
autophagyCellular tumor antigen p53Homo sapiens (human)
DNA damage responseCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrestCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediatorCellular tumor antigen p53Homo sapiens (human)
transforming growth factor beta receptor signaling pathwayCellular tumor antigen p53Homo sapiens (human)
Ras protein signal transductionCellular tumor antigen p53Homo sapiens (human)
gastrulationCellular tumor antigen p53Homo sapiens (human)
neuroblast proliferationCellular tumor antigen p53Homo sapiens (human)
negative regulation of neuroblast proliferationCellular tumor antigen p53Homo sapiens (human)
protein localizationCellular tumor antigen p53Homo sapiens (human)
negative regulation of DNA replicationCellular tumor antigen p53Homo sapiens (human)
negative regulation of cell population proliferationCellular tumor antigen p53Homo sapiens (human)
determination of adult lifespanCellular tumor antigen p53Homo sapiens (human)
mRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
rRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
response to salt stressCellular tumor antigen p53Homo sapiens (human)
response to inorganic substanceCellular tumor antigen p53Homo sapiens (human)
response to X-rayCellular tumor antigen p53Homo sapiens (human)
response to gamma radiationCellular tumor antigen p53Homo sapiens (human)
positive regulation of gene expressionCellular tumor antigen p53Homo sapiens (human)
cardiac muscle cell apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of cardiac muscle cell apoptotic processCellular tumor antigen p53Homo sapiens (human)
glial cell proliferationCellular tumor antigen p53Homo sapiens (human)
viral processCellular tumor antigen p53Homo sapiens (human)
glucose catabolic process to lactate via pyruvateCellular tumor antigen p53Homo sapiens (human)
cerebellum developmentCellular tumor antigen p53Homo sapiens (human)
negative regulation of cell growthCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
negative regulation of transforming growth factor beta receptor signaling pathwayCellular tumor antigen p53Homo sapiens (human)
mitotic G1 DNA damage checkpoint signalingCellular tumor antigen p53Homo sapiens (human)
negative regulation of telomere maintenance via telomeraseCellular tumor antigen p53Homo sapiens (human)
T cell differentiation in thymusCellular tumor antigen p53Homo sapiens (human)
tumor necrosis factor-mediated signaling pathwayCellular tumor antigen p53Homo sapiens (human)
regulation of tissue remodelingCellular tumor antigen p53Homo sapiens (human)
cellular response to UVCellular tumor antigen p53Homo sapiens (human)
multicellular organism growthCellular tumor antigen p53Homo sapiens (human)
positive regulation of mitochondrial membrane permeabilityCellular tumor antigen p53Homo sapiens (human)
cellular response to glucose starvationCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
entrainment of circadian clock by photoperiodCellular tumor antigen p53Homo sapiens (human)
mitochondrial DNA repairCellular tumor antigen p53Homo sapiens (human)
regulation of DNA damage response, signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of neuron apoptotic processCellular tumor antigen p53Homo sapiens (human)
transcription initiation-coupled chromatin remodelingCellular tumor antigen p53Homo sapiens (human)
negative regulation of proteolysisCellular tumor antigen p53Homo sapiens (human)
negative regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
positive regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
positive regulation of RNA polymerase II transcription preinitiation complex assemblyCellular tumor antigen p53Homo sapiens (human)
positive regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
response to antibioticCellular tumor antigen p53Homo sapiens (human)
fibroblast proliferationCellular tumor antigen p53Homo sapiens (human)
negative regulation of fibroblast proliferationCellular tumor antigen p53Homo sapiens (human)
circadian behaviorCellular tumor antigen p53Homo sapiens (human)
bone marrow developmentCellular tumor antigen p53Homo sapiens (human)
embryonic organ developmentCellular tumor antigen p53Homo sapiens (human)
positive regulation of peptidyl-tyrosine phosphorylationCellular tumor antigen p53Homo sapiens (human)
protein stabilizationCellular tumor antigen p53Homo sapiens (human)
negative regulation of helicase activityCellular tumor antigen p53Homo sapiens (human)
protein tetramerizationCellular tumor antigen p53Homo sapiens (human)
chromosome organizationCellular tumor antigen p53Homo sapiens (human)
neuron apoptotic processCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycleCellular tumor antigen p53Homo sapiens (human)
hematopoietic stem cell differentiationCellular tumor antigen p53Homo sapiens (human)
negative regulation of glial cell proliferationCellular tumor antigen p53Homo sapiens (human)
type II interferon-mediated signaling pathwayCellular tumor antigen p53Homo sapiens (human)
cardiac septum morphogenesisCellular tumor antigen p53Homo sapiens (human)
positive regulation of programmed necrotic cell deathCellular tumor antigen p53Homo sapiens (human)
protein-containing complex assemblyCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stressCellular tumor antigen p53Homo sapiens (human)
thymocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of thymocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
necroptotic processCellular tumor antigen p53Homo sapiens (human)
cellular response to hypoxiaCellular tumor antigen p53Homo sapiens (human)
cellular response to xenobiotic stimulusCellular tumor antigen p53Homo sapiens (human)
cellular response to ionizing radiationCellular tumor antigen p53Homo sapiens (human)
cellular response to gamma radiationCellular tumor antigen p53Homo sapiens (human)
cellular response to UV-CCellular tumor antigen p53Homo sapiens (human)
stem cell proliferationCellular tumor antigen p53Homo sapiens (human)
signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
cellular response to actinomycin DCellular tumor antigen p53Homo sapiens (human)
positive regulation of release of cytochrome c from mitochondriaCellular tumor antigen p53Homo sapiens (human)
cellular senescenceCellular tumor antigen p53Homo sapiens (human)
replicative senescenceCellular tumor antigen p53Homo sapiens (human)
oxidative stress-induced premature senescenceCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathwayCellular tumor antigen p53Homo sapiens (human)
oligodendrocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of execution phase of apoptosisCellular tumor antigen p53Homo sapiens (human)
negative regulation of mitophagyCellular tumor antigen p53Homo sapiens (human)
regulation of mitochondrial membrane permeability involved in apoptotic processCellular tumor antigen p53Homo sapiens (human)
regulation of intrinsic apoptotic signaling pathway by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of miRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
negative regulation of G1 to G0 transitionCellular tumor antigen p53Homo sapiens (human)
negative regulation of miRNA processingCellular tumor antigen p53Homo sapiens (human)
negative regulation of glucose catabolic process to lactate via pyruvateCellular tumor antigen p53Homo sapiens (human)
negative regulation of pentose-phosphate shuntCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to hypoxiaCellular tumor antigen p53Homo sapiens (human)
regulation of fibroblast apoptotic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of stem cell proliferationCellular tumor antigen p53Homo sapiens (human)
positive regulation of cellular senescenceCellular tumor antigen p53Homo sapiens (human)
positive regulation of intrinsic apoptotic signaling pathwayCellular tumor antigen p53Homo sapiens (human)
negative regulation of cytokine production involved in inflammatory responsePeroxisome proliferator-activated receptor alphaHomo sapiens (human)
negative regulation of reactive oxygen species biosynthetic processPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
negative regulation of hepatocyte apoptotic processPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
negative regulation of signaling receptor activityPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
positive regulation of ATP biosynthetic processPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
negative regulation of transforming growth factor beta receptor signaling pathwayPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
negative regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
positive regulation of transformation of host cell by virusPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
negative regulation of transcription by RNA polymerase IIPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
response to hypoxiaPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
gluconeogenesisPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
heart developmentPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
response to nutrientPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
epidermis developmentPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
cellular response to starvationPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
regulation of cellular ketone metabolic processPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
negative regulation of macrophage derived foam cell differentiationPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
negative regulation of cholesterol storagePeroxisome proliferator-activated receptor alphaHomo sapiens (human)
negative regulation of sequestering of triglyceridePeroxisome proliferator-activated receptor alphaHomo sapiens (human)
regulation of fatty acid metabolic processPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
intracellular receptor signaling pathwayPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
positive regulation of fatty acid beta-oxidationPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
negative regulation of appetitePeroxisome proliferator-activated receptor alphaHomo sapiens (human)
response to insulinPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
circadian regulation of gene expressionPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
behavioral response to nicotinePeroxisome proliferator-activated receptor alphaHomo sapiens (human)
wound healingPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
lipoprotein metabolic processPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
regulation of circadian rhythmPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
steroid hormone mediated signaling pathwayPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
response to ethanolPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
positive regulation of gluconeogenesisPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
negative regulation of blood pressurePeroxisome proliferator-activated receptor alphaHomo sapiens (human)
negative regulation of glycolytic processPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
positive regulation of DNA-templated transcriptionPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
nitric oxide metabolic processPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
positive regulation of fatty acid oxidationPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
positive regulation of lipid biosynthetic processPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
negative regulation of inflammatory responsePeroxisome proliferator-activated receptor alphaHomo sapiens (human)
negative regulation of cell growth involved in cardiac muscle cell developmentPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
enamel mineralizationPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
cellular response to fructose stimulusPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
negative regulation of miRNA transcriptionPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
negative regulation of leukocyte cell-cell adhesionPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
regulation of fatty acid transportPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
hormone-mediated signaling pathwayPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
fatty acid metabolic processPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
positive regulation of fatty acid metabolic processPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
cell differentiationPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
inositol phosphate metabolic processInositol hexakisphosphate kinase 1Homo sapiens (human)
phosphatidylinositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
negative regulation of cold-induced thermogenesisInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (63)

Processvia Protein(s)Taxonomy
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
signaling receptor bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
peptide antigen bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein-folding chaperone bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
transcription cis-regulatory region bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription factor activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
cis-regulatory region sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
core promoter sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
TFIID-class transcription factor complex bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription repressor activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription activator activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
protease bindingCellular tumor antigen p53Homo sapiens (human)
p53 bindingCellular tumor antigen p53Homo sapiens (human)
DNA bindingCellular tumor antigen p53Homo sapiens (human)
chromatin bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription factor activityCellular tumor antigen p53Homo sapiens (human)
mRNA 3'-UTR bindingCellular tumor antigen p53Homo sapiens (human)
copper ion bindingCellular tumor antigen p53Homo sapiens (human)
protein bindingCellular tumor antigen p53Homo sapiens (human)
zinc ion bindingCellular tumor antigen p53Homo sapiens (human)
enzyme bindingCellular tumor antigen p53Homo sapiens (human)
receptor tyrosine kinase bindingCellular tumor antigen p53Homo sapiens (human)
ubiquitin protein ligase bindingCellular tumor antigen p53Homo sapiens (human)
histone deacetylase regulator activityCellular tumor antigen p53Homo sapiens (human)
ATP-dependent DNA/DNA annealing activityCellular tumor antigen p53Homo sapiens (human)
identical protein bindingCellular tumor antigen p53Homo sapiens (human)
histone deacetylase bindingCellular tumor antigen p53Homo sapiens (human)
protein heterodimerization activityCellular tumor antigen p53Homo sapiens (human)
protein-folding chaperone bindingCellular tumor antigen p53Homo sapiens (human)
protein phosphatase 2A bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II-specific DNA-binding transcription factor bindingCellular tumor antigen p53Homo sapiens (human)
14-3-3 protein bindingCellular tumor antigen p53Homo sapiens (human)
MDM2/MDM4 family protein bindingCellular tumor antigen p53Homo sapiens (human)
disordered domain specific bindingCellular tumor antigen p53Homo sapiens (human)
general transcription initiation factor bindingCellular tumor antigen p53Homo sapiens (human)
molecular function activator activityCellular tumor antigen p53Homo sapiens (human)
promoter-specific chromatin bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
DNA-binding transcription factor activity, RNA polymerase II-specificPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
DNA-binding transcription activator activityPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
transcription coactivator bindingPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
DNA-binding transcription repressor activity, RNA polymerase II-specificPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
DNA-binding transcription activator activity, RNA polymerase II-specificPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
DNA bindingPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
DNA-binding transcription factor activityPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
nuclear steroid receptor activityPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
nuclear receptor activityPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
protein bindingPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
zinc ion bindingPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
lipid bindingPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
phosphatase bindingPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
protein domain specific bindingPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
mitogen-activated protein kinase kinase kinase bindingPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
ubiquitin conjugating enzyme bindingPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
sequence-specific DNA bindingPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
protein-containing complex bindingPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
NFAT protein bindingPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
RNA polymerase II-specific DNA-binding transcription factor bindingPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
MDM2/MDM4 family protein bindingPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
DNA-binding transcription factor bindingPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
inositol-1,3,4,5,6-pentakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol heptakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
protein bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
ATP bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 1-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 3-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol 5-diphosphate pentakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol diphosphate tetrakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (36)

Processvia Protein(s)Taxonomy
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
Golgi membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
endoplasmic reticulumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
Golgi apparatusHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
cell surfaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
ER to Golgi transport vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
secretory granule membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
phagocytic vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
early endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
recycling endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular exosomeHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
lumenal side of endoplasmic reticulum membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
MHC class I protein complexHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular spaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
external side of plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
nuclear bodyCellular tumor antigen p53Homo sapiens (human)
nucleusCellular tumor antigen p53Homo sapiens (human)
nucleoplasmCellular tumor antigen p53Homo sapiens (human)
replication forkCellular tumor antigen p53Homo sapiens (human)
nucleolusCellular tumor antigen p53Homo sapiens (human)
cytoplasmCellular tumor antigen p53Homo sapiens (human)
mitochondrionCellular tumor antigen p53Homo sapiens (human)
mitochondrial matrixCellular tumor antigen p53Homo sapiens (human)
endoplasmic reticulumCellular tumor antigen p53Homo sapiens (human)
centrosomeCellular tumor antigen p53Homo sapiens (human)
cytosolCellular tumor antigen p53Homo sapiens (human)
nuclear matrixCellular tumor antigen p53Homo sapiens (human)
PML bodyCellular tumor antigen p53Homo sapiens (human)
transcription repressor complexCellular tumor antigen p53Homo sapiens (human)
site of double-strand breakCellular tumor antigen p53Homo sapiens (human)
germ cell nucleusCellular tumor antigen p53Homo sapiens (human)
chromatinCellular tumor antigen p53Homo sapiens (human)
transcription regulator complexCellular tumor antigen p53Homo sapiens (human)
protein-containing complexCellular tumor antigen p53Homo sapiens (human)
nucleusPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
nucleoplasmPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
chromatinPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
nucleusPeroxisome proliferator-activated receptor alphaHomo sapiens (human)
fibrillar centerInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
cytosolInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleusInositol hexakisphosphate kinase 1Homo sapiens (human)
cytoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (34)

Assay IDTitleYearJournalArticle
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID624612Specific activity of expressed human recombinant UGT1A92000Annual review of pharmacology and toxicology, , Volume: 40Human UDP-glucuronosyltransferases: metabolism, expression, and disease.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (483)

TimeframeStudies, This Drug (%)All Drugs %
pre-199057 (11.80)18.7374
1990's40 (8.28)18.2507
2000's103 (21.33)29.6817
2010's174 (36.02)24.3611
2020's109 (22.57)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 26.84

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index26.84 (24.57)
Research Supply Index6.25 (2.92)
Research Growth Index4.93 (4.65)
Search Engine Demand Index32.77 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (26.84)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials6 (1.18%)5.53%
Reviews7 (1.38%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other496 (97.45%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]