Page last updated: 2024-11-05

cetylpyridinium chloride

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Occurs in Manufacturing Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Cetylpyridinium chloride (CPC) is a cationic surfactant commonly used as an antiseptic and antimicrobial agent. It is synthesized by reacting cetyl alcohol with pyridine and hydrochloric acid. CPC disrupts the cell membranes of bacteria, leading to their death. It is effective against a wide range of bacteria, including *Streptococcus mutans*, which is responsible for dental caries. CPC is commonly found in oral care products, such as mouthwashes and toothpastes, as well as in some skin care products and wound dressings. Its effectiveness as an antimicrobial agent, its low toxicity, and its wide range of applications make it a valuable compound in medicine and hygiene. Research into CPC focuses on its potential applications in various fields, such as its efficacy against drug-resistant bacteria, its ability to inhibit biofilm formation, and its potential use in drug delivery systems.'

Cross-References

ID SourceID
PubMed CID22324
CHEMBL ID2003538
CHEBI ID3566
SCHEMBL ID93923
MeSH IDM0003974

Synonyms (60)

Synonym
pyridinium, 1-hexadecyl-, chloride, monohydrate
ceepryn
1-hexadecylpyridinium chloride monohydrate
cetylpyridinium chloride monohydrate
CHEBI:3566 ,
1-hexadecylpyridinium chloride--water (1/1)
6004-24-6
D01062
cetylpyridinium chloride hydrate (jan)
sprol (tn)
cetylpyridinium chloride (usp)
1-hexadecylpyridin-1-ium chloride hydrate
smr001306716
hexadecylpyridinium chloride monohydrate
MLS002207106
nsc-756673
cetylpyridinium chloride hydrate
nb-002
CHEMBL2003538
c21h40clno
d9om4sk49p ,
unii-d9om4sk49p
nsc 756673
cetylpyridinium chloride [usp:inn:ban:jan]
FT-0623577
AKOS015892130
cetylpyridinium chloride hydrate [jan]
cetylpyridinium chloride [mart.]
cetylpyridinium chloride [inci]
cetylpyridinium chloride [usp monograph]
cetylpyridinium chloride monohydrate [ep impurity]
cetylpyridinium chloride [usp-rs]
cetylpyridinium chloride [ii]
cetylpyridinium chloride [ep monograph]
cetylpyridinium chloride monohydrate [who-dd]
cetylpyridinium chloride monohydrate [mi]
cetylpyridinium chloride [vandf]
SCHEMBL93923
CS-4814
1-cetylpyridinium chloride monohydrate
HY-B1289
cetylpyridinium (chloride monohydrate)
mfcd00149977
AKOS026749972
(1-hexadecyl)pyridinium chloride monohydrate
1-hexadecyl-1-pyridinium chloride hydrate
NFCRBQADEGXVDL-UHFFFAOYSA-M
cetylpyridinum chloride
1-hexadecylpyridinium chloride hydrate
Q27106134
AMY18060
BCP30488
1-hexadecylpyridin-1-ium chloride hydrate pound>>hexadecylpyridinium chloride monohydrate
1-hexadecylpyridin-1-ium;chloride;hydrate
DTXSID20975463
1-hexadecylpyridin-1-ium chloride--water (1/1/1)
D88568
BS-42229
1-hexadecylpyridin-1-ium hydrate chloride
EN300-1698717
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Occurs in Manufacturing (7 Items)

ItemProcessFrequency
Open Beauty Factscore-ingredient6
Non food productscore-ingredient5
en:open-beauty-factscore-ingredient5
de:Mundspülungcore-ingredient1
en:toothpastecore-ingredient1
Non alimentairecore-ingredient1
Mouthwashcore-ingredient1

Drug Classes (1)

ClassDescription
hydrateAn addition compound that contains water in weak chemical combination with another compound.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (11)

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
60 kDa heat shock protein, mitochondrialHomo sapiens (human)IC50 (µMol)6.00000.17004.559010.0000AID1594139
10 kDa heat shock protein, mitochondrialHomo sapiens (human)IC50 (µMol)6.00000.17004.559010.0000AID1594139
Thiosulfate sulfurtransferaseHomo sapiens (human)IC50 (µMol)100.00000.06003.96319.7000AID1594135
60 kDa chaperonin Escherichia coliIC50 (µMol)6.55000.03903.55529.8000AID1594140; AID1594141
10 kDa chaperonin Escherichia coliIC50 (µMol)6.55000.03903.55529.8000AID1594140; AID1594141
putative polyproteinIC50 (µMol)13.57550.25083.82838.4620AID720577; AID720578
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
delta-type opioid receptorHomo sapiens (human)EC50 (µMol)92.48500.13203.58649.5690AID602264
mu-type opioid receptor isoform MOR-1Homo sapiens (human)EC50 (µMol)92.48500.13203.30049.5690AID602264
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Other Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
DNA repair protein RAD52 homolog isoform aHomo sapiens (human)AC504.21000.150012.066235.2100AID652116
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (40)

Processvia Protein(s)Taxonomy
protein folding60 kDa chaperoninEscherichia coli K-12
response to radiation60 kDa chaperoninEscherichia coli K-12
response to heat60 kDa chaperoninEscherichia coli K-12
virion assembly60 kDa chaperoninEscherichia coli K-12
chaperone cofactor-dependent protein refolding60 kDa chaperoninEscherichia coli K-12
protein refolding60 kDa chaperoninEscherichia coli K-12
chaperone cofactor-dependent protein refolding60 kDa chaperoninEscherichia coli K-12
response to heat60 kDa chaperoninEscherichia coli K-12
adhesion of symbiont to host60 kDa heat shock protein, mitochondrialHomo sapiens (human)
positive regulation of type II interferon production60 kDa heat shock protein, mitochondrialHomo sapiens (human)
T cell activation60 kDa heat shock protein, mitochondrialHomo sapiens (human)
MyD88-dependent toll-like receptor signaling pathway60 kDa heat shock protein, mitochondrialHomo sapiens (human)
positive regulation of T cell mediated immune response to tumor cell60 kDa heat shock protein, mitochondrialHomo sapiens (human)
'de novo' protein folding60 kDa heat shock protein, mitochondrialHomo sapiens (human)
activation of cysteine-type endopeptidase activity involved in apoptotic process60 kDa heat shock protein, mitochondrialHomo sapiens (human)
response to unfolded protein60 kDa heat shock protein, mitochondrialHomo sapiens (human)
response to cold60 kDa heat shock protein, mitochondrialHomo sapiens (human)
positive regulation of interferon-alpha production60 kDa heat shock protein, mitochondrialHomo sapiens (human)
positive regulation of type II interferon production60 kDa heat shock protein, mitochondrialHomo sapiens (human)
positive regulation of interleukin-10 production60 kDa heat shock protein, mitochondrialHomo sapiens (human)
positive regulation of interleukin-12 production60 kDa heat shock protein, mitochondrialHomo sapiens (human)
positive regulation of interleukin-6 production60 kDa heat shock protein, mitochondrialHomo sapiens (human)
protein refolding60 kDa heat shock protein, mitochondrialHomo sapiens (human)
B cell proliferation60 kDa heat shock protein, mitochondrialHomo sapiens (human)
B cell activation60 kDa heat shock protein, mitochondrialHomo sapiens (human)
positive regulation of macrophage activation60 kDa heat shock protein, mitochondrialHomo sapiens (human)
positive regulation of apoptotic process60 kDa heat shock protein, mitochondrialHomo sapiens (human)
negative regulation of apoptotic process60 kDa heat shock protein, mitochondrialHomo sapiens (human)
isotype switching to IgG isotypes60 kDa heat shock protein, mitochondrialHomo sapiens (human)
protein stabilization60 kDa heat shock protein, mitochondrialHomo sapiens (human)
positive regulation of T cell activation60 kDa heat shock protein, mitochondrialHomo sapiens (human)
chaperone-mediated protein complex assembly60 kDa heat shock protein, mitochondrialHomo sapiens (human)
protein maturation60 kDa heat shock protein, mitochondrialHomo sapiens (human)
biological process involved in interaction with symbiont60 kDa heat shock protein, mitochondrialHomo sapiens (human)
cellular response to interleukin-760 kDa heat shock protein, mitochondrialHomo sapiens (human)
T cell activation60 kDa heat shock protein, mitochondrialHomo sapiens (human)
protein import into mitochondrial intermembrane space60 kDa heat shock protein, mitochondrialHomo sapiens (human)
protein folding60 kDa heat shock protein, mitochondrialHomo sapiens (human)
mitochondrial unfolded protein response60 kDa heat shock protein, mitochondrialHomo sapiens (human)
apoptotic mitochondrial changes60 kDa heat shock protein, mitochondrialHomo sapiens (human)
osteoblast differentiation10 kDa heat shock protein, mitochondrialHomo sapiens (human)
protein folding10 kDa heat shock protein, mitochondrialHomo sapiens (human)
activation of cysteine-type endopeptidase activity involved in apoptotic process10 kDa heat shock protein, mitochondrialHomo sapiens (human)
response to unfolded protein10 kDa heat shock protein, mitochondrialHomo sapiens (human)
chaperone cofactor-dependent protein refolding10 kDa heat shock protein, mitochondrialHomo sapiens (human)
sulfur amino acid catabolic processThiosulfate sulfurtransferaseHomo sapiens (human)
cyanate catabolic processThiosulfate sulfurtransferaseHomo sapiens (human)
epithelial cell differentiationThiosulfate sulfurtransferaseHomo sapiens (human)
rRNA import into mitochondrionThiosulfate sulfurtransferaseHomo sapiens (human)
rRNA transportThiosulfate sulfurtransferaseHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (25)

Processvia Protein(s)Taxonomy
magnesium ion binding60 kDa chaperoninEscherichia coli K-12
protein binding60 kDa chaperoninEscherichia coli K-12
ATP binding60 kDa chaperoninEscherichia coli K-12
isomerase activity60 kDa chaperoninEscherichia coli K-12
ATP hydrolysis activity60 kDa chaperoninEscherichia coli K-12
identical protein binding60 kDa chaperoninEscherichia coli K-12
unfolded protein binding60 kDa chaperoninEscherichia coli K-12
ATP-dependent protein folding chaperone60 kDa chaperoninEscherichia coli K-12
lipopolysaccharide binding60 kDa heat shock protein, mitochondrialHomo sapiens (human)
p53 binding60 kDa heat shock protein, mitochondrialHomo sapiens (human)
DNA replication origin binding60 kDa heat shock protein, mitochondrialHomo sapiens (human)
single-stranded DNA binding60 kDa heat shock protein, mitochondrialHomo sapiens (human)
RNA binding60 kDa heat shock protein, mitochondrialHomo sapiens (human)
double-stranded RNA binding60 kDa heat shock protein, mitochondrialHomo sapiens (human)
protein binding60 kDa heat shock protein, mitochondrialHomo sapiens (human)
ATP binding60 kDa heat shock protein, mitochondrialHomo sapiens (human)
high-density lipoprotein particle binding60 kDa heat shock protein, mitochondrialHomo sapiens (human)
isomerase activity60 kDa heat shock protein, mitochondrialHomo sapiens (human)
ATP hydrolysis activity60 kDa heat shock protein, mitochondrialHomo sapiens (human)
enzyme binding60 kDa heat shock protein, mitochondrialHomo sapiens (human)
ubiquitin protein ligase binding60 kDa heat shock protein, mitochondrialHomo sapiens (human)
apolipoprotein binding60 kDa heat shock protein, mitochondrialHomo sapiens (human)
apolipoprotein A-I binding60 kDa heat shock protein, mitochondrialHomo sapiens (human)
unfolded protein binding60 kDa heat shock protein, mitochondrialHomo sapiens (human)
protein-folding chaperone binding60 kDa heat shock protein, mitochondrialHomo sapiens (human)
ATP-dependent protein folding chaperone60 kDa heat shock protein, mitochondrialHomo sapiens (human)
RNA binding10 kDa heat shock protein, mitochondrialHomo sapiens (human)
protein binding10 kDa heat shock protein, mitochondrialHomo sapiens (human)
ATP binding10 kDa heat shock protein, mitochondrialHomo sapiens (human)
protein folding chaperone10 kDa heat shock protein, mitochondrialHomo sapiens (human)
unfolded protein binding10 kDa heat shock protein, mitochondrialHomo sapiens (human)
protein-folding chaperone binding10 kDa heat shock protein, mitochondrialHomo sapiens (human)
metal ion binding10 kDa heat shock protein, mitochondrialHomo sapiens (human)
thiosulfate sulfurtransferase activityThiosulfate sulfurtransferaseHomo sapiens (human)
5S rRNA bindingThiosulfate sulfurtransferaseHomo sapiens (human)
3-mercaptopyruvate sulfurtransferase activityThiosulfate sulfurtransferaseHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (20)

Processvia Protein(s)Taxonomy
cytoplasm60 kDa chaperoninEscherichia coli K-12
cytosol60 kDa chaperoninEscherichia coli K-12
membrane60 kDa chaperoninEscherichia coli K-12
GroEL-GroES complex60 kDa chaperoninEscherichia coli K-12
mitochondrial matrix60 kDa heat shock protein, mitochondrialHomo sapiens (human)
extracellular space60 kDa heat shock protein, mitochondrialHomo sapiens (human)
cytoplasm60 kDa heat shock protein, mitochondrialHomo sapiens (human)
mitochondrion60 kDa heat shock protein, mitochondrialHomo sapiens (human)
mitochondrial inner membrane60 kDa heat shock protein, mitochondrialHomo sapiens (human)
mitochondrial matrix60 kDa heat shock protein, mitochondrialHomo sapiens (human)
early endosome60 kDa heat shock protein, mitochondrialHomo sapiens (human)
cytosol60 kDa heat shock protein, mitochondrialHomo sapiens (human)
plasma membrane60 kDa heat shock protein, mitochondrialHomo sapiens (human)
clathrin-coated pit60 kDa heat shock protein, mitochondrialHomo sapiens (human)
cell surface60 kDa heat shock protein, mitochondrialHomo sapiens (human)
membrane60 kDa heat shock protein, mitochondrialHomo sapiens (human)
coated vesicle60 kDa heat shock protein, mitochondrialHomo sapiens (human)
secretory granule60 kDa heat shock protein, mitochondrialHomo sapiens (human)
extracellular exosome60 kDa heat shock protein, mitochondrialHomo sapiens (human)
sperm midpiece60 kDa heat shock protein, mitochondrialHomo sapiens (human)
sperm plasma membrane60 kDa heat shock protein, mitochondrialHomo sapiens (human)
migrasome60 kDa heat shock protein, mitochondrialHomo sapiens (human)
protein-containing complex60 kDa heat shock protein, mitochondrialHomo sapiens (human)
lipopolysaccharide receptor complex60 kDa heat shock protein, mitochondrialHomo sapiens (human)
mitochondrial inner membrane60 kDa heat shock protein, mitochondrialHomo sapiens (human)
mitochondrion10 kDa heat shock protein, mitochondrialHomo sapiens (human)
membrane10 kDa heat shock protein, mitochondrialHomo sapiens (human)
extracellular exosome10 kDa heat shock protein, mitochondrialHomo sapiens (human)
mitochondrial matrix10 kDa heat shock protein, mitochondrialHomo sapiens (human)
extracellular spaceThiosulfate sulfurtransferaseHomo sapiens (human)
mitochondrionThiosulfate sulfurtransferaseHomo sapiens (human)
mitochondrial matrixThiosulfate sulfurtransferaseHomo sapiens (human)
mitochondrionThiosulfate sulfurtransferaseHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (23)

Assay IDTitleYearJournalArticle
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1594145Inhibition of Escherichia coli GroEL expressed in Escherichia coli DH5alpha/Escherichia coli GroES expressed in Escherichia coli BL21 (DE3) assessed as reduction in GroEL/GroES-mediated denatured rhodanese refolding by measuring rhodanese enzyme activity 2019Bioorganic & medicinal chemistry letters, 05-01, Volume: 29, Issue:9
HSP60/10 chaperonin systems are inhibited by a variety of approved drugs, natural products, and known bioactive molecules.
AID1594134Inhibition of native soluble pig heart MDH assessed as reduction in MDH enzyme activity using sodium mesoxalate as substrate and NADH by malachite green dye based spectrometric analysis2019Bioorganic & medicinal chemistry letters, 05-01, Volume: 29, Issue:9
HSP60/10 chaperonin systems are inhibited by a variety of approved drugs, natural products, and known bioactive molecules.
AID1594144Inhibition of Escherichia coli GroEL expressed in Escherichia coliDH5alpha/Escherichia coli GroES expressed in Escherichia coli BL21 (DE3) assessed as reduction in GroEL/GroES-mediated denatured soluble pig heart MDH refolding by measuring MDH enzyme acti2019Bioorganic & medicinal chemistry letters, 05-01, Volume: 29, Issue:9
HSP60/10 chaperonin systems are inhibited by a variety of approved drugs, natural products, and known bioactive molecules.
AID1594137Inhibition of ATPase activity of Escherichia coli GroEL expressed in Escherichia coliDH5alpha incubated for 60 mins using ATP by spectrometric analysis2019Bioorganic & medicinal chemistry letters, 05-01, Volume: 29, Issue:9
HSP60/10 chaperonin systems are inhibited by a variety of approved drugs, natural products, and known bioactive molecules.
AID1594143Selectivity index, ratio of IC50 for inhibition of native rhodanese (unknown origin) to IC50 for inhibition of Escherichia coli GroEL expressed in Escherichia coliDH5alpha/Escherichia coli GroES expressed in Escherichia coli BL21 (DE3) assessed as reducti2019Bioorganic & medicinal chemistry letters, 05-01, Volume: 29, Issue:9
HSP60/10 chaperonin systems are inhibited by a variety of approved drugs, natural products, and known bioactive molecules.
AID977599Inhibition of sodium fluorescein uptake in OATP1B1-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM2013Molecular pharmacology, Jun, Volume: 83, Issue:6
Structure-based identification of OATP1B1/3 inhibitors.
AID1594138Selectivity index, ratio of IC50 for inhibition of native soluble pig heart MDH to IC50 for inhibition of Escherichia coli GroEL expressed in Escherichia coli DH5alpha/Escherichia coli GroES expressed in Escherichia coli BL21 (DE3) assessed as reduction i2019Bioorganic & medicinal chemistry letters, 05-01, Volume: 29, Issue:9
HSP60/10 chaperonin systems are inhibited by a variety of approved drugs, natural products, and known bioactive molecules.
AID1594141Inhibition of Escherichia coli GroEL expressed in Escherichia coliDH5alpha/Escherichia coli GroES expressed in Escherichia coli BL21 (DE3) assessed as reduction in GroEL/GroES-mediated denatured soluble pig heart MDH refolding by measuring MDH enzyme acti2019Bioorganic & medicinal chemistry letters, 05-01, Volume: 29, Issue:9
HSP60/10 chaperonin systems are inhibited by a variety of approved drugs, natural products, and known bioactive molecules.
AID1594142Selectivity index, ratio of IC50 for inhibition of native rhodanese (unknown origin) to IC50 for inhibition of Escherichia coli GroEL expressed in Escherichia coli DH5alpha/Escherichia coli GroES expressed in Escherichia coli BL21 (DE3) assessed as reduct2019Bioorganic & medicinal chemistry letters, 05-01, Volume: 29, Issue:9
HSP60/10 chaperonin systems are inhibited by a variety of approved drugs, natural products, and known bioactive molecules.
AID977602Inhibition of sodium fluorescein uptake in OATP1B3-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM2013Molecular pharmacology, Jun, Volume: 83, Issue:6
Structure-based identification of OATP1B1/3 inhibitors.
AID1594136Selectivity index, ratio of IC50 for inhibition of native soluble pig heart MDH to IC50 for inhibition of Escherichia coli GroEL expressed in Escherichia coliDH5alpha/Escherichia coli GroES expressed in Escherichia coli BL21 (DE3) assessed as reduction in2019Bioorganic & medicinal chemistry letters, 05-01, Volume: 29, Issue:9
HSP60/10 chaperonin systems are inhibited by a variety of approved drugs, natural products, and known bioactive molecules.
AID1594140Inhibition of Escherichia coli GroEL expressed in Escherichia coli DH5alpha/Escherichia coli GroES expressed in Escherichia coli BL21 (DE3) assessed as reduction in GroEL/GroES-mediated denatured rhodanese refolding by measuring rhodanese enzyme activity 2019Bioorganic & medicinal chemistry letters, 05-01, Volume: 29, Issue:9
HSP60/10 chaperonin systems are inhibited by a variety of approved drugs, natural products, and known bioactive molecules.
AID1594135Inhibition of native rhodanese (unknown origin) assessed as reduction in rhodanese enzyme activity after 45 mins by Fe(SCN)3 dye based spectrometric analysis2019Bioorganic & medicinal chemistry letters, 05-01, Volume: 29, Issue:9
HSP60/10 chaperonin systems are inhibited by a variety of approved drugs, natural products, and known bioactive molecules.
AID1594139Inhibition of human N-terminal octa-His-tagged HSP60 expressed in Escherichia coli Rosetta(DE3) pLysS/human HSP10 expressed in Escherichia coli Rosetta(DE3) assessed as reduction in HSP60/HSP10-mediated denatured MDH refolding by measuring MDH enzyme acti2019Bioorganic & medicinal chemistry letters, 05-01, Volume: 29, Issue:9
HSP60/10 chaperonin systems are inhibited by a variety of approved drugs, natural products, and known bioactive molecules.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (5)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's4 (80.00)24.3611
2020's0 (0.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 79.80

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be very strong demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index79.80 (24.57)
Research Supply Index1.79 (2.92)
Research Growth Index4.42 (4.65)
Search Engine Demand Index133.89 (26.88)
Search Engine Supply Index2.01 (0.95)

This Compound (79.80)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other5 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]