Page last updated: 2024-12-09

N4-(2-methoxyphenyl)benzene-1,4-diamine

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Cross-References

ID SourceID
PubMed CID2369091
CHEMBL ID1310702
CHEBI ID112237
SCHEMBL ID1618638

Synonyms (25)

Synonym
n-(2-methoxy-phenyl)-benzene-1,4-diamine
ENAMINE_001862
OPREA1_311693
smr000352481
MLS001007260
CHEBI:112237
AKOS000115597
HMS1399E14
4-n-(2-methoxyphenyl)benzene-1,4-diamine
HMS2722L08
CHEMBL1310702
EN300-02103
5840-11-9
n1-(2-methoxyphenyl)benzene-1,4-diamine
SCHEMBL1618638
1-n-(2-methoxyphenyl)benzene-1,4-diamine
Q27192339
n4-(2-methoxyphenyl)benzene-1,4-diamine
sr-01000031876
SR-01000031876-1
DTXSID20368290
n~1~-(2-methoxyphenyl)benzene-1,4-diamine
n-(2-methoxyphenyl)benzene-1,4-diamine
Z56821894
SB79171
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (2)

ClassDescription
aromatic etherAny ether in which the oxygen is attached to at least one aryl substituent.
substituted aniline
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (14)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, Putative fructose-1,6-bisphosphate aldolaseGiardia intestinalisPotency17.74070.140911.194039.8107AID2451
Chain A, JmjC domain-containing histone demethylation protein 3AHomo sapiens (human)Potency50.11870.631035.7641100.0000AID504339
ATAD5 protein, partialHomo sapiens (human)Potency20.58780.004110.890331.5287AID504467
GLS proteinHomo sapiens (human)Potency11.22020.35487.935539.8107AID624170
Microtubule-associated protein tauHomo sapiens (human)Potency27.82980.180013.557439.8107AID1460; AID1468
thioredoxin glutathione reductaseSchistosoma mansoniPotency50.11870.100022.9075100.0000AID485364
Smad3Homo sapiens (human)Potency22.38720.00527.809829.0929AID588855
aldehyde dehydrogenase 1 family, member A1Homo sapiens (human)Potency28.18380.011212.4002100.0000AID1030
bromodomain adjacent to zinc finger domain 2BHomo sapiens (human)Potency28.18380.707936.904389.1251AID504333
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency12.58930.035520.977089.1251AID504332
chromobox protein homolog 1Homo sapiens (human)Potency56.23410.006026.168889.1251AID540317
mitogen-activated protein kinase 1Homo sapiens (human)Potency28.18380.039816.784239.8107AID1454
lethal(3)malignant brain tumor-like protein 1 isoform IHomo sapiens (human)Potency39.81070.075215.225339.8107AID485360
gemininHomo sapiens (human)Potency23.10930.004611.374133.4983AID624297
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Bioassays (14)

Assay IDTitleYearJournalArticle
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588519A screen for compounds that inhibit viral RNA polymerase binding and polymerization activities2011Antiviral research, Sep, Volume: 91, Issue:3
High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (6)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (16.67)29.6817
2010's4 (66.67)24.3611
2020's1 (16.67)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.35

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.35 (24.57)
Research Supply Index1.95 (2.92)
Research Growth Index4.30 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.35)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other6 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]