Page last updated: 2024-12-10

N-(1-benzylpiperidin-4-yl)-2-(pyridin-3-yl)quinazolin-4-amine

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

N-(1-benzylpiperidin-4-yl)-2-(pyridin-3-yl)quinazolin-4-amine : A member of the class of quinazolines that is quinazoline which is substituted by a pyridin-3-yl group and a (1-benzylpiperidin-4-yl)nitrilo group at positions 2 and 4, respectively. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID4882879
CHEMBL ID1405704
CHEBI ID121832
SCHEMBL ID18354425

Synonyms (18)

Synonym
MLS000772469
smr000377086
n-(1-benzylpiperidin-4-yl)-2-(pyridin-3-yl)quinazolin-4-amine
CHEBI:121832
n-[1-(phenylmethyl)-4-piperidinyl]-2-(3-pyridinyl)-4-quinazolinamine
HMS2716A22
n-(1-benzylpiperidin-4-yl)-2-pyridin-3-ylquinazolin-4-amine
AKOS007995445
AB00611648-06
CHEMBL1405704 ,
Q27210413
SCHEMBL18354425
bdbm50196625
NCGC00279473-01
Z31231713
way-642961
851471-68-6
EN300-26867115
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (6)

ClassDescription
piperidines
quinazolinesAny organic heterobicyclic compound based on a quinazoline skeleton and its substituted derivatives.
pyridinesAny organonitrogen heterocyclic compound based on a pyridine skeleton and its substituted derivatives.
secondary amino compoundA compound formally derived from ammonia by replacing two hydrogen atoms by organyl groups.
tertiary amino compoundA compound formally derived from ammonia by replacing three hydrogen atoms by organyl groups.
aromatic amineAn amino compound in which the amino group is linked directly to an aromatic system.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (20)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
BRCA1Homo sapiens (human)Potency35.48130.89137.722525.1189AID624202
WRNHomo sapiens (human)Potency28.18380.168331.2583100.0000AID651768
USP1 protein, partialHomo sapiens (human)Potency6.30960.031637.5844354.8130AID743255
TDP1 proteinHomo sapiens (human)Potency15.67580.000811.382244.6684AID686978; AID686979
Microtubule-associated protein tauHomo sapiens (human)Potency8.91250.180013.557439.8107AID1468
Smad3Homo sapiens (human)Potency15.84890.00527.809829.0929AID588855
apical membrane antigen 1, AMA1Plasmodium falciparum 3D7Potency25.11890.707912.194339.8107AID720542
67.9K proteinVaccinia virusPotency15.18610.00018.4406100.0000AID720579; AID720580
bromodomain adjacent to zinc finger domain 2BHomo sapiens (human)Potency70.79460.707936.904389.1251AID504333
IDH1Homo sapiens (human)Potency23.10930.005210.865235.4813AID686970
DNA polymerase betaHomo sapiens (human)Potency5.01190.022421.010289.1251AID485314
flap endonuclease 1Homo sapiens (human)Potency56.23410.133725.412989.1251AID588795
DNA polymerase iota isoform a (long)Homo sapiens (human)Potency100.00000.050127.073689.1251AID588590
gemininHomo sapiens (human)Potency29.09290.004611.374133.4983AID624296; AID624297
VprHuman immunodeficiency virus 1Potency3.16231.584919.626463.0957AID651644
survival motor neuron protein isoform dHomo sapiens (human)Potency15.84890.125912.234435.4813AID1458
DNA dC->dU-editing enzyme APOBEC-3F isoform aHomo sapiens (human)Potency35.48130.025911.239831.6228AID602313
lamin isoform A-delta10Homo sapiens (human)Potency11.22020.891312.067628.1838AID1487
Glycoprotein hormones alpha chainHomo sapiens (human)Potency11.22024.46688.344810.0000AID624291
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Lysosomal acid glucosylceramidaseHomo sapiens (human)IC50 (µMol)36.07000.03002.35898.8000AID1321657
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (66)

Processvia Protein(s)Taxonomy
G protein-coupled receptor signaling pathwayGlycoprotein hormones alpha chainHomo sapiens (human)
positive regulation of cell population proliferationGlycoprotein hormones alpha chainHomo sapiens (human)
hormone-mediated signaling pathwayGlycoprotein hormones alpha chainHomo sapiens (human)
regulation of signaling receptor activityGlycoprotein hormones alpha chainHomo sapiens (human)
positive regulation of steroid biosynthetic processGlycoprotein hormones alpha chainHomo sapiens (human)
positive regulation of cell migrationGlycoprotein hormones alpha chainHomo sapiens (human)
thyroid gland developmentGlycoprotein hormones alpha chainHomo sapiens (human)
luteinizing hormone secretionGlycoprotein hormones alpha chainHomo sapiens (human)
organ growthGlycoprotein hormones alpha chainHomo sapiens (human)
follicle-stimulating hormone signaling pathwayGlycoprotein hormones alpha chainHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIGlycoprotein hormones alpha chainHomo sapiens (human)
negative regulation of organ growthGlycoprotein hormones alpha chainHomo sapiens (human)
follicle-stimulating hormone secretionGlycoprotein hormones alpha chainHomo sapiens (human)
thyroid hormone generationGlycoprotein hormones alpha chainHomo sapiens (human)
mitochondrion organizationLysosomal acid glucosylceramidaseHomo sapiens (human)
neuron projection developmentLysosomal acid glucosylceramidaseHomo sapiens (human)
glucosylceramide catabolic processLysosomal acid glucosylceramidaseHomo sapiens (human)
autophagyLysosomal acid glucosylceramidaseHomo sapiens (human)
lysosome organizationLysosomal acid glucosylceramidaseHomo sapiens (human)
cholesterol metabolic processLysosomal acid glucosylceramidaseHomo sapiens (human)
determination of adult lifespanLysosomal acid glucosylceramidaseHomo sapiens (human)
cellular response to starvationLysosomal acid glucosylceramidaseHomo sapiens (human)
response to pHLysosomal acid glucosylceramidaseHomo sapiens (human)
microglia differentiationLysosomal acid glucosylceramidaseHomo sapiens (human)
regulation of macroautophagyLysosomal acid glucosylceramidaseHomo sapiens (human)
antigen processing and presentationLysosomal acid glucosylceramidaseHomo sapiens (human)
lipid storageLysosomal acid glucosylceramidaseHomo sapiens (human)
cerebellar Purkinje cell layer formationLysosomal acid glucosylceramidaseHomo sapiens (human)
pyramidal neuron differentiationLysosomal acid glucosylceramidaseHomo sapiens (human)
respiratory electron transport chainLysosomal acid glucosylceramidaseHomo sapiens (human)
termination of signal transductionLysosomal acid glucosylceramidaseHomo sapiens (human)
lipid glycosylationLysosomal acid glucosylceramidaseHomo sapiens (human)
negative regulation of protein-containing complex assemblyLysosomal acid glucosylceramidaseHomo sapiens (human)
regulation of TOR signalingLysosomal acid glucosylceramidaseHomo sapiens (human)
positive regulation of proteasomal ubiquitin-dependent protein catabolic processLysosomal acid glucosylceramidaseHomo sapiens (human)
negative regulation of interleukin-6 productionLysosomal acid glucosylceramidaseHomo sapiens (human)
T cell differentiation in thymusLysosomal acid glucosylceramidaseHomo sapiens (human)
response to testosteroneLysosomal acid glucosylceramidaseHomo sapiens (human)
positive regulation of protein dephosphorylationLysosomal acid glucosylceramidaseHomo sapiens (human)
proteasome-mediated ubiquitin-dependent protein catabolic processLysosomal acid glucosylceramidaseHomo sapiens (human)
positive regulation of protein-containing complex disassemblyLysosomal acid glucosylceramidaseHomo sapiens (human)
negative regulation of MAP kinase activityLysosomal acid glucosylceramidaseHomo sapiens (human)
negative regulation of neuron apoptotic processLysosomal acid glucosylceramidaseHomo sapiens (human)
response to estrogenLysosomal acid glucosylceramidaseHomo sapiens (human)
sphingosine biosynthetic processLysosomal acid glucosylceramidaseHomo sapiens (human)
ceramide biosynthetic processLysosomal acid glucosylceramidaseHomo sapiens (human)
cell maturationLysosomal acid glucosylceramidaseHomo sapiens (human)
brain morphogenesisLysosomal acid glucosylceramidaseHomo sapiens (human)
homeostasis of number of cellsLysosomal acid glucosylceramidaseHomo sapiens (human)
negative regulation of inflammatory responseLysosomal acid glucosylceramidaseHomo sapiens (human)
neuromuscular processLysosomal acid glucosylceramidaseHomo sapiens (human)
neuron apoptotic processLysosomal acid glucosylceramidaseHomo sapiens (human)
establishment of skin barrierLysosomal acid glucosylceramidaseHomo sapiens (human)
microglial cell proliferationLysosomal acid glucosylceramidaseHomo sapiens (human)
motor behaviorLysosomal acid glucosylceramidaseHomo sapiens (human)
cellular response to tumor necrosis factorLysosomal acid glucosylceramidaseHomo sapiens (human)
hematopoietic stem cell proliferationLysosomal acid glucosylceramidaseHomo sapiens (human)
response to dexamethasoneLysosomal acid glucosylceramidaseHomo sapiens (human)
lymphocyte migrationLysosomal acid glucosylceramidaseHomo sapiens (human)
response to thyroid hormoneLysosomal acid glucosylceramidaseHomo sapiens (human)
beta-glucoside catabolic processLysosomal acid glucosylceramidaseHomo sapiens (human)
positive regulation of protein lipidationLysosomal acid glucosylceramidaseHomo sapiens (human)
positive regulation of neuronal action potentialLysosomal acid glucosylceramidaseHomo sapiens (human)
positive regulation of autophagy of mitochondrion in response to mitochondrial depolarizationLysosomal acid glucosylceramidaseHomo sapiens (human)
autophagosome organizationLysosomal acid glucosylceramidaseHomo sapiens (human)
regulation of lysosomal protein catabolic processLysosomal acid glucosylceramidaseHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (9)

Processvia Protein(s)Taxonomy
hormone activityGlycoprotein hormones alpha chainHomo sapiens (human)
protein bindingGlycoprotein hormones alpha chainHomo sapiens (human)
follicle-stimulating hormone activityGlycoprotein hormones alpha chainHomo sapiens (human)
galactosylceramidase activityLysosomal acid glucosylceramidaseHomo sapiens (human)
glucosylceramidase activityLysosomal acid glucosylceramidaseHomo sapiens (human)
signaling receptor bindingLysosomal acid glucosylceramidaseHomo sapiens (human)
scavenger receptor bindingLysosomal acid glucosylceramidaseHomo sapiens (human)
protein bindingLysosomal acid glucosylceramidaseHomo sapiens (human)
glucosyltransferase activityLysosomal acid glucosylceramidaseHomo sapiens (human)
steryl-beta-glucosidase activityLysosomal acid glucosylceramidaseHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (12)

Processvia Protein(s)Taxonomy
extracellular regionGlycoprotein hormones alpha chainHomo sapiens (human)
extracellular spaceGlycoprotein hormones alpha chainHomo sapiens (human)
Golgi lumenGlycoprotein hormones alpha chainHomo sapiens (human)
follicle-stimulating hormone complexGlycoprotein hormones alpha chainHomo sapiens (human)
pituitary gonadotropin complexGlycoprotein hormones alpha chainHomo sapiens (human)
extracellular spaceGlycoprotein hormones alpha chainHomo sapiens (human)
lysosomeLysosomal acid glucosylceramidaseHomo sapiens (human)
lysosomal membraneLysosomal acid glucosylceramidaseHomo sapiens (human)
endoplasmic reticulumLysosomal acid glucosylceramidaseHomo sapiens (human)
Golgi apparatusLysosomal acid glucosylceramidaseHomo sapiens (human)
trans-Golgi networkLysosomal acid glucosylceramidaseHomo sapiens (human)
lysosomal lumenLysosomal acid glucosylceramidaseHomo sapiens (human)
extracellular exosomeLysosomal acid glucosylceramidaseHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (14)

Assay IDTitleYearJournalArticle
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1321657Inhibition of synthetic recombinant wild type GCase enzyme velaglucerase alfa (unknown origin) at pH 5.9 preincubated for 5 mins followed by addition of 4-Methylumbelliferyl beta-D-glucopyranoside as substrate measured after 30 mins by fluorescence analys2016Journal of medicinal chemistry, Sep-22, Volume: 59, Issue:18
Design and Synthesis of Potent Quinazolines as Selective β-Glucocerebrosidase Modulators.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (6)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (16.67)29.6817
2010's4 (66.67)24.3611
2020's1 (16.67)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.35

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.35 (24.57)
Research Supply Index1.95 (2.92)
Research Growth Index4.30 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.35)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other6 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]