Page last updated: 2024-11-12

3,5-dimethoxy-4-hydroxybenzyl alcohol-4-O-beta-D-glucopyranoside

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

3,5-dimethoxy-4-hydroxybenzyl alcohol-4-O-beta-D-glucopyranoside : A monosaccharide derivative that consists of 4-(hydroxymethyl)-2,6-dimethoxyphenol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. Isolated from Acacia mearnsii it exhibits cytotoxic activity. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

FloraRankFlora DefinitionFamilyFamily Definition
AcaciagenusA plant genus of the family FABACEAE. The gums and tanning agents obtained from Acacia are called GUM ARABIC. The common name catechu is more often used for Areca catechu (ARECA).[MeSH]FabaceaeThe large family of plants characterized by pods. Some are edible and some cause LATHYRISM or FAVISM and other forms of poisoning. Other species yield useful materials like gums from ACACIA and various LECTINS like PHYTOHEMAGGLUTININS from PHASEOLUS. Many of them harbor NITROGEN FIXATION bacteria on their roots. Many but not all species of beans belong to this family.[MeSH]
Acacia mearnsiispecies[no description available]FabaceaeThe large family of plants characterized by pods. Some are edible and some cause LATHYRISM or FAVISM and other forms of poisoning. Other species yield useful materials like gums from ACACIA and various LECTINS like PHYTOHEMAGGLUTININS from PHASEOLUS. Many of them harbor NITROGEN FIXATION bacteria on their roots. Many but not all species of beans belong to this family.[MeSH]

Cross-References

ID SourceID
PubMed CID10736338
CHEMBL ID1923074
CHEBI ID68338

Synonyms (13)

Synonym
3,5-dimethoxy-4-hydroxybenzyl alcohol-4-o-beta-d-glucopyranoside
4-(hydroxymethyl)-2,6-dimethoxyphenyl beta-d-glucopyranoside
chebi:68338 ,
CHEMBL1923074
di-o-methylcrenatin
64121-98-8
NCGC00385556-01
Q27136835
FS-9281
DTXSID101315734
AKOS040761617
HY-N3763
CS-0024177

Research Excerpts

Bioavailability

ExcerptReferenceRelevance
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (2)

RoleDescription
metaboliteAny intermediate or product resulting from metabolism. The term 'metabolite' subsumes the classes commonly known as primary and secondary metabolites.
antineoplastic agentA substance that inhibits or prevents the proliferation of neoplasms.
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (5)

ClassDescription
beta-D-glucosideAny D-glucoside in which the anomeric centre has beta-configuration.
aromatic etherAny ether in which the oxygen is attached to at least one aryl substituent.
benzyl alcoholsCompounds containing a phenylmethanol skeleton.
primary alcoholA primary alcohol is a compound in which a hydroxy group, -OH, is attached to a saturated carbon atom which has either three hydrogen atoms attached to it or only one other carbon atom and two hydrogen atoms attached to it.
monosaccharide derivativeA carbohydrate derivative that is formally obtained from a monosaccharide.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Bioassays (14)

Assay IDTitleYearJournalArticle
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347159Primary screen GU Rhodamine qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347160Primary screen NINDS Rhodamine qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID735840Antioxidant activity assessed as DPPH radical scavenging activity by ELISA2013Journal of natural products, Apr-26, Volume: 76, Issue:4
Antioxidant lignans and chromone glycosides from Eurya japonica.
AID1316657Antineuroinflammatory activity in human BV2 cells assessed as inhibition of LPS-induced NO production after 24 hrs in presence of LPS by Griess reaction2016Bioorganic & medicinal chemistry letters, 10-15, Volume: 26, Issue:20
Bioactive phenols as potential neuroinflammation inhibitors from the leaves of Xanthoceras sorbifolia Bunge.
AID1316661Cytotoxicity against LPS-activated human BV2 cells assessed as cell viability at 100 uM after 24 hrs by MTT assay (Rvb = 98.03 to 98.84%)2016Bioorganic & medicinal chemistry letters, 10-15, Volume: 26, Issue:20
Bioactive phenols as potential neuroinflammation inhibitors from the leaves of Xanthoceras sorbifolia Bunge.
AID1316660Cytotoxicity against LPS-activated human BV2 cells assessed as cell viability at 30 uM after 24 hrs by MTT assay (Rvb = 98.03 to 98.84%)2016Bioorganic & medicinal chemistry letters, 10-15, Volume: 26, Issue:20
Bioactive phenols as potential neuroinflammation inhibitors from the leaves of Xanthoceras sorbifolia Bunge.
AID632952Cytotoxicity against human Caco2 cells after 72 hrs by MTS assay2011Journal of natural products, Nov-28, Volume: 74, Issue:11
Phenolic glycosides from sugar maple (Acer saccharum) bark.
AID1316658Cytotoxicity against LPS-activated human BV2 cells assessed as cell viability at 1 uM after 24 hrs by MTT assay (Rvb = 98.03 to 98.84%)2016Bioorganic & medicinal chemistry letters, 10-15, Volume: 26, Issue:20
Bioactive phenols as potential neuroinflammation inhibitors from the leaves of Xanthoceras sorbifolia Bunge.
AID632953Cytotoxicity against human CCD-18Co cells after 72 hrs by MTS assay2011Journal of natural products, Nov-28, Volume: 74, Issue:11
Phenolic glycosides from sugar maple (Acer saccharum) bark.
AID632951Cytotoxicity against human HCT116 cells after 72 hrs by MTS assay2011Journal of natural products, Nov-28, Volume: 74, Issue:11
Phenolic glycosides from sugar maple (Acer saccharum) bark.
AID1316659Cytotoxicity against LPS-activated human BV2 cells assessed as cell viability at 10 uM after 24 hrs by MTT assay (Rvb = 98.03 to 98.84%)2016Bioorganic & medicinal chemistry letters, 10-15, Volume: 26, Issue:20
Bioactive phenols as potential neuroinflammation inhibitors from the leaves of Xanthoceras sorbifolia Bunge.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (6)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's4 (66.67)24.3611
2020's2 (33.33)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.56

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.56 (24.57)
Research Supply Index1.95 (2.92)
Research Growth Index4.51 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.56)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other6 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]