Page last updated: 2024-12-09

2-aminochromone-3-carboxaldehyde

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

2-aminochromone-3-carboxaldehyde: structure in first source [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

Cross-References

ID SourceID
PubMed CID735928
CHEMBL ID87426
SCHEMBL ID8752350
MeSH IDM0592317

Synonyms (26)

Synonym
CHEMBL87426 ,
BB 0260647
smr000253368
MLS000335614
2-amino-3-formylchromone, 97%
STK505090
2-amino-4-oxo-4h-chromene-3-carbaldehyde
bdbm50131070
AKOS001060942
2-amino-4-oxochromene-3-carbaldehyde
61424-76-8
A833215
HMS2533J17
2-amino-3-formylchromone
2-aminochromone-3-carboxaldehyde
FT-0640753
BP-12686
TVGIYZVZBKAJRR-UHFFFAOYSA-N
2-amino-4-oxo-4h-1-benzopyran-3-carboxaldehyde
SCHEMBL8752350
mfcd00191735
DTXSID50352884
CS-0221443
Z55993034
EN300-09152
T71124
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (5)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, 2-oxoglutarate OxygenaseHomo sapiens (human)Potency39.81070.177814.390939.8107AID2147
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency22.38720.035520.977089.1251AID504332
thyroid hormone receptor beta isoform aHomo sapiens (human)Potency0.07940.010039.53711,122.0200AID1479
DNA polymerase iota isoform a (long)Homo sapiens (human)Potency89.12510.050127.073689.1251AID588590
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Tyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)IC50 (µMol)1,000.00000.00053.49849.7600AID164993
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (27)

Processvia Protein(s)Taxonomy
positive regulation of JUN kinase activityTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
protein dephosphorylationTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
insulin receptor signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
regulation of signal transductionTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of signal transductionTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
actin cytoskeleton organizationTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
regulation of endocytosisTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of vascular endothelial growth factor receptor signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
endoplasmic reticulum unfolded protein responseTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
regulation of intracellular protein transportTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
cellular response to unfolded proteinTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
peptidyl-tyrosine dephosphorylationTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
platelet-derived growth factor receptor-beta signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
IRE1-mediated unfolded protein responseTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
insulin receptor recyclingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of MAP kinase activityTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of insulin receptor signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
regulation of type I interferon-mediated signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
growth hormone receptor signaling pathway via JAK-STATTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
positive regulation of protein tyrosine kinase activityTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of ERK1 and ERK2 cascadeTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
regulation of hepatocyte growth factor receptor signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
positive regulation of IRE1-mediated unfolded protein responseTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of PERK-mediated unfolded protein responseTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
peptidyl-tyrosine dephosphorylation involved in inactivation of protein kinase activityTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
positive regulation of receptor catabolic processTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (12)

Processvia Protein(s)Taxonomy
RNA bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
protein tyrosine phosphatase activityTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
insulin receptor bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
protein bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
zinc ion bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
enzyme bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
protein kinase bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
receptor tyrosine kinase bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
cadherin bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
ephrin receptor bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
protein phosphatase 2A bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
non-membrane spanning protein tyrosine phosphatase activityTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (11)

Processvia Protein(s)Taxonomy
plasma membraneTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
cytoplasmTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
mitochondrial matrixTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
early endosomeTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
endoplasmic reticulumTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
cytosolTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
mitochondrial cristaTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
endosome lumenTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
sorting endosomeTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
cytoplasmic side of endoplasmic reticulum membraneTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
protein-containing complexTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
endoplasmic reticulumTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
cytoplasmTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
early endosomeTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (14)

Assay IDTitleYearJournalArticle
AID164993Inhibition of human Protein-tyrosine phosphatase 1B2003Bioorganic & medicinal chemistry letters, Aug-04, Volume: 13, Issue:15
Formylchromone derivatives as a novel class of protein tyrosine phosphatase 1B inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (7)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (28.57)29.6817
2010's4 (57.14)24.3611
2020's1 (14.29)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.20

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.20 (24.57)
Research Supply Index2.08 (2.92)
Research Growth Index4.28 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.20)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other7 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]