2-(4-methoxyphenyl)sulfonylquinoxaline
2-(4-Methoxyphenyl)sulfonylquinoxaline is a chemical compound that has been shown to exhibit interesting biological activity. It is a derivative of quinoxaline, a heterocyclic compound with a broad range of applications in medicine and materials science.
**Here's what makes it important for research:**
* **Anti-cancer activity:** Studies have shown that 2-(4-methoxyphenyl)sulfonylquinoxaline possesses significant anti-cancer properties. It has demonstrated the ability to inhibit the growth of various cancer cell lines, including those derived from breast, lung, and colon cancers. This makes it a promising candidate for the development of new cancer therapies.
* **Anti-inflammatory properties:** The compound has also been found to exhibit anti-inflammatory activity. It can inhibit the production of pro-inflammatory cytokines, which are molecules that contribute to inflammation in the body. This potential application could lead to new treatments for inflammatory diseases like rheumatoid arthritis and inflammatory bowel disease.
* **Modulation of protein function:** 2-(4-methoxyphenyl)sulfonylquinoxaline can interact with specific proteins involved in cell signaling pathways. By altering the activity of these proteins, it can influence various cellular processes, making it a valuable tool for studying the mechanisms of disease and identifying potential drug targets.
**Furthermore, the compound's structure allows for various modifications and synthetic variations, enabling researchers to explore a range of related compounds with potentially improved properties.**
**In summary, 2-(4-methoxyphenyl)sulfonylquinoxaline holds promise for research in various fields, including cancer therapy, inflammatory disease treatment, and drug discovery. Its potential for further development and its ability to interact with cellular processes make it a valuable target for ongoing research.**
**Note:** While this information is based on research findings, it is crucial to understand that 2-(4-methoxyphenyl)sulfonylquinoxaline is still in the research phase and not yet approved for use in humans. Further studies are necessary to determine its safety and efficacy for therapeutic applications.
Cross-References
ID Source | ID |
---|---|
PubMed CID | 4209634 |
CHEMBL ID | 1326933 |
CHEBI ID | 121960 |
Synonyms (13)
Synonym |
---|
HMS2589A22 |
4-methoxyphenyl 2-quinoxalinyl sulfone |
smr000333054 |
MLS000694733 |
OPREA1_630959 |
CHEBI:121960 |
AKOS005084484 |
2-(4-methoxyphenyl)sulfonylquinoxaline |
338394-62-0 |
2D-039 |
2-(4-methoxybenzenesulfonyl)quinoxaline |
CHEMBL1326933 |
Q27210582 |
Drug Classes (1)
Class | Description |
---|---|
quinoxaline derivative | Any naphthyridine derivative that is a derivative of quinoxaline (1,4-naphthyridine). |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein Targets (15)
Potency Measurements
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, MAJOR APURINIC/APYRIMIDINIC ENDONUCLEASE | Homo sapiens (human) | Potency | 0.7079 | 0.0032 | 45.4673 | 12,589.2998 | AID2517 |
Nrf2 | Homo sapiens (human) | Potency | 17.7828 | 0.0920 | 8.2222 | 23.1093 | AID624171 |
thioredoxin reductase | Rattus norvegicus (Norway rat) | Potency | 79.4328 | 0.1000 | 20.8793 | 79.4328 | AID588453 |
TDP1 protein | Homo sapiens (human) | Potency | 24.8446 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
thioredoxin glutathione reductase | Schistosoma mansoni | Potency | 17.7828 | 0.1000 | 22.9075 | 100.0000 | AID485364 |
IDH1 | Homo sapiens (human) | Potency | 18.3564 | 0.0052 | 10.8652 | 35.4813 | AID686970 |
chromobox protein homolog 1 | Homo sapiens (human) | Potency | 100.0000 | 0.0060 | 26.1688 | 89.1251 | AID540317 |
huntingtin isoform 2 | Homo sapiens (human) | Potency | 10.0000 | 0.0006 | 18.4198 | 1,122.0200 | AID1688 |
pyruvate kinase PKM isoform a | Homo sapiens (human) | Potency | 35.4813 | 0.0401 | 7.4590 | 31.6228 | AID1631; AID1634 |
DNA polymerase beta | Homo sapiens (human) | Potency | 100.0000 | 0.0224 | 21.0102 | 89.1251 | AID485314 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 12.6728 | 0.0079 | 8.2332 | 1,122.0200 | AID2546; AID2551 |
geminin | Homo sapiens (human) | Potency | 22.7265 | 0.0046 | 11.3741 | 33.4983 | AID624296; AID624297 |
Glycoprotein hormones alpha chain | Homo sapiens (human) | Potency | 14.1254 | 4.4668 | 8.3448 | 10.0000 | AID624291 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Activation Measurements
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
recombinase A | Mycobacterium tuberculosis H37Rv | EC50 (µMol) | 79.2000 | 0.0180 | 23.2882 | 287.6000 | AID434968; AID435010 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Other Measurements
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
replicative DNA helicase | Mycobacterium tuberculosis H37Rv | AC50 | 217.0750 | 0.0570 | 30.7482 | 325.3000 | AID449749; AID449750 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Biological Processes (14)
Molecular Functions (3)
Process | via Protein(s) | Taxonomy |
---|---|---|
hormone activity | Glycoprotein hormones alpha chain | Homo sapiens (human) |
protein binding | Glycoprotein hormones alpha chain | Homo sapiens (human) |
follicle-stimulating hormone activity | Glycoprotein hormones alpha chain | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Ceullar Components (5)
Process | via Protein(s) | Taxonomy |
---|---|---|
extracellular region | Glycoprotein hormones alpha chain | Homo sapiens (human) |
extracellular space | Glycoprotein hormones alpha chain | Homo sapiens (human) |
Golgi lumen | Glycoprotein hormones alpha chain | Homo sapiens (human) |
follicle-stimulating hormone complex | Glycoprotein hormones alpha chain | Homo sapiens (human) |
pituitary gonadotropin complex | Glycoprotein hormones alpha chain | Homo sapiens (human) |
extracellular space | Glycoprotein hormones alpha chain | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Bioassays (13)
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Research
Studies (5)
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Market Indicators
Research Demand Index: 12.56
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Study Types
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |