2-(4-bromophenyl)-5-(2-methylphenyl)-1,3,4-oxadiazole is a **heterocyclic organic compound** with the following structure:
* **2-(4-bromophenyl)** indicates a 4-bromophenyl group attached at the 2 position of the oxadiazole ring.
* **5-(2-methylphenyl)** indicates a 2-methylphenyl group attached at the 5 position of the oxadiazole ring.
* **1,3,4-oxadiazole** refers to the central ring structure containing oxygen and nitrogen atoms.
This compound is **important in research for several reasons:**
**1. Potential Biological Activities:**
* **Anti-inflammatory:** Oxadiazole derivatives have been shown to exhibit anti-inflammatory properties due to their ability to inhibit enzymes involved in inflammation.
* **Antimicrobial:** Some oxadiazole compounds possess antimicrobial activity, making them potential candidates for drug development.
* **Anticancer:** Research suggests that certain oxadiazole derivatives might possess anticancer properties, potentially acting on cell growth and proliferation.
**2. Synthetic Versatility:**
* **Building Block:** The oxadiazole ring can be further modified with various functional groups, allowing for the synthesis of a diverse range of derivatives.
* **Drug Discovery:** This versatility makes it a useful building block for the development of new drugs with tailored biological activities.
**3. Material Science Applications:**
* **Luminescence:** Oxadiazole derivatives often exhibit luminescence properties, making them useful in optoelectronic devices, such as organic light-emitting diodes (OLEDs).
**4. Chemical Probes:**
* **Fluorescence:** Some oxadiazole compounds are fluorescent and can be used as chemical probes for detecting and tracking specific molecules or events in biological systems.
**Current Research:**
Ongoing research focuses on understanding the detailed mechanisms of action, exploring new synthetic routes, and developing novel applications of 2-(4-bromophenyl)-5-(2-methylphenyl)-1,3,4-oxadiazole and its derivatives.
**It's important to note that the exact biological activities and applications of this specific compound may vary depending on the study and experimental conditions.** However, the research interest in this type of compound highlights its potential value in diverse fields, from medicine to materials science.
ID Source | ID |
---|---|
PubMed CID | 646295 |
CHEMBL ID | 1453905 |
CHEBI ID | 109441 |
Synonym |
---|
AG-690/08590012 |
MLS000074534 |
smr000001323 |
2-(4-bromo-phenyl)-5-o-tolyl-[1,3,4]oxadiazole |
2-(4-bromophenyl)-5-(2-methylphenyl)-1,3,4-oxadiazole |
STK040580 |
CHEBI:109441 |
AKOS000618973 |
HMS2362P16 |
CHEMBL1453905 |
Q27188576 |
Class | Description |
---|---|
organobromine compound | A compound containing at least one carbon-bromine bond. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, JmjC domain-containing histone demethylation protein 3A | Homo sapiens (human) | Potency | 10.0000 | 0.6310 | 35.7641 | 100.0000 | AID504339 |
Luciferase | Photinus pyralis (common eastern firefly) | Potency | 4.7755 | 0.0072 | 15.7588 | 89.3584 | AID588342 |
ClpP | Bacillus subtilis | Potency | 25.1189 | 1.9953 | 22.6730 | 39.8107 | AID651965 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 10.3910 | 0.0041 | 10.8903 | 31.5287 | AID504466; AID504467 |
thyroid stimulating hormone receptor | Homo sapiens (human) | Potency | 3.1623 | 0.0013 | 18.0743 | 39.8107 | AID926; AID938 |
P53 | Homo sapiens (human) | Potency | 7.0795 | 0.0731 | 9.6858 | 31.6228 | AID504706 |
NPC intracellular cholesterol transporter 1 precursor | Homo sapiens (human) | Potency | 1.9953 | 0.0126 | 2.4518 | 25.0177 | AID485313 |
chromobox protein homolog 1 | Homo sapiens (human) | Potency | 79.4328 | 0.0060 | 26.1688 | 89.1251 | AID540317 |
nuclear factor erythroid 2-related factor 2 isoform 2 | Homo sapiens (human) | Potency | 23.1093 | 0.0041 | 9.9848 | 25.9290 | AID504444 |
ras-related protein Rab-9A | Homo sapiens (human) | Potency | 5.0119 | 0.0002 | 2.6215 | 31.4954 | AID485297 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 2.8184 | 0.0079 | 8.2332 | 1,122.0200 | AID2546 |
geminin | Homo sapiens (human) | Potency | 16.3601 | 0.0046 | 11.3741 | 33.4983 | AID624296 |
survival motor neuron protein isoform d | Homo sapiens (human) | Potency | 14.1254 | 0.1259 | 12.2344 | 35.4813 | AID1458 |
Glycoprotein hormones alpha chain | Homo sapiens (human) | Potency | 5.0119 | 4.4668 | 8.3448 | 10.0000 | AID624291 |
Inositol monophosphatase 1 | Rattus norvegicus (Norway rat) | Potency | 28.1838 | 1.0000 | 10.4756 | 28.1838 | AID1457 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
hormone activity | Glycoprotein hormones alpha chain | Homo sapiens (human) |
protein binding | Glycoprotein hormones alpha chain | Homo sapiens (human) |
follicle-stimulating hormone activity | Glycoprotein hormones alpha chain | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
extracellular region | Glycoprotein hormones alpha chain | Homo sapiens (human) |
extracellular space | Glycoprotein hormones alpha chain | Homo sapiens (human) |
Golgi lumen | Glycoprotein hormones alpha chain | Homo sapiens (human) |
follicle-stimulating hormone complex | Glycoprotein hormones alpha chain | Homo sapiens (human) |
pituitary gonadotropin complex | Glycoprotein hormones alpha chain | Homo sapiens (human) |
extracellular space | Glycoprotein hormones alpha chain | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |