Page last updated: 2024-12-09

2-(3-bromophenyl)-N-(4,5-dihydrothiazol-2-yl)-4-quinolinecarboxamide

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

2-(3-bromophenyl)-N-(4,5-dihydrothiazol-2-yl)-4-quinolinecarboxamide is a chemical compound. While I don't have access to specific information about its research significance, I can break down the structure and potential implications:

**Structure and Properties:**

* **2-(3-bromophenyl)-:** This part indicates a phenyl ring (benzene ring) with a bromine atom at the 3rd position attached to the main molecule at the 2nd position.
* **N-(4,5-dihydrothiazol-2-yl)-:** This refers to a 4,5-dihydrothiazole ring attached to the main molecule through a nitrogen atom. Dihydrothiazole is a heterocyclic ring containing sulfur and nitrogen.
* **4-quinolinecarboxamide:** This indicates a quinoline ring (fused aromatic system) with a carboxamide group (CONH2) attached at the 4th position.

**Potential Research Significance:**

Based on the structure, this compound could be important for research in a number of areas:

* **Pharmacology:**
* **Potential Drug Target:** The presence of a quinoline ring, often found in pharmaceutical compounds, suggests potential pharmacological activity. Quinolines are known to interact with various biological targets, and the specific substituents could modify their interactions.
* **Targeting Specific Receptors:** The heterocyclic ring (dihydrothiazole) could be designed to interact with specific receptors or enzymes, potentially leading to the development of new drugs for specific conditions.
* **Organic Chemistry:**
* **Synthesis and Reactivity:** The compound's complex structure could be interesting for synthetic organic chemistry, exploring new reactions and synthetic pathways.
* **Materials Science:**
* **Optical Properties:** The aromatic rings and the thiazole ring could potentially lead to interesting optical properties, making this compound relevant for materials science.

**Important Note:** I need more information to provide a precise answer about the specific research importance of this compound. To find detailed information, you should consult scientific databases like PubMed, Scopus, and SciFinder, or research publications related to this specific compound.

Cross-References

ID SourceID
PubMed CID1009385
CHEMBL ID1403632
CHEBI ID109859

Synonyms (11)

Synonym
2-(3-bromophenyl)-n-(4,5-dihydro-1,3-thiazol-2-yl)-4-quinolinecarboxamide
MLS000680751
smr000272464
2-(3-bromophenyl)-n-(4,5-dihydro-1,3-thiazol-2-yl)quinoline-4-carboxamide
STK418460
CHEBI:109859
AKOS003275103
HMS2548B20
CHEMBL1403632
Q27189173
2-(3-bromophenyl)-n-(4,5-dihydrothiazol-2-yl)-4-quinolinecarboxamide
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
quinolinesA class of aromatic heterocyclic compounds each of which contains a benzene ring ortho fused to carbons 2 and 3 of a pyridine ring.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (14)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, CruzipainTrypanosoma cruziPotency31.62280.002014.677939.8107AID1476
LuciferasePhotinus pyralis (common eastern firefly)Potency10.69100.007215.758889.3584AID588342
glp-1 receptor, partialHomo sapiens (human)Potency22.38720.01846.806014.1254AID624417
chaperonin-containing TCP-1 beta subunit homologHomo sapiens (human)Potency100.00003.981127.764939.8107AID504842
ATAD5 protein, partialHomo sapiens (human)Potency29.09290.004110.890331.5287AID504467
TDP1 proteinHomo sapiens (human)Potency25.92900.000811.382244.6684AID686978
Microtubule-associated protein tauHomo sapiens (human)Potency26.65140.180013.557439.8107AID1460; AID1468
aldehyde dehydrogenase 1 family, member A1Homo sapiens (human)Potency22.38720.011212.4002100.0000AID1030
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1Homo sapiens (human)Potency35.48130.001815.663839.8107AID894
transcriptional regulator ERG isoform 3Homo sapiens (human)Potency7.07950.794321.275750.1187AID624246
nuclear receptor ROR-gamma isoform 1Mus musculus (house mouse)Potency14.73330.00798.23321,122.0200AID2546; AID2551
gemininHomo sapiens (human)Potency4.10950.004611.374133.4983AID624296
lamin isoform A-delta10Homo sapiens (human)Potency19.95260.891312.067628.1838AID1487
TAR DNA-binding protein 43Homo sapiens (human)Potency22.38721.778316.208135.4813AID652104
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (18)

Processvia Protein(s)Taxonomy
negative regulation of protein phosphorylationTAR DNA-binding protein 43Homo sapiens (human)
mRNA processingTAR DNA-binding protein 43Homo sapiens (human)
RNA splicingTAR DNA-binding protein 43Homo sapiens (human)
negative regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
regulation of protein stabilityTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of insulin secretionTAR DNA-binding protein 43Homo sapiens (human)
response to endoplasmic reticulum stressTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of protein import into nucleusTAR DNA-binding protein 43Homo sapiens (human)
regulation of circadian rhythmTAR DNA-binding protein 43Homo sapiens (human)
regulation of apoptotic processTAR DNA-binding protein 43Homo sapiens (human)
negative regulation by host of viral transcriptionTAR DNA-binding protein 43Homo sapiens (human)
rhythmic processTAR DNA-binding protein 43Homo sapiens (human)
regulation of cell cycleTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA destabilizationTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA stabilizationTAR DNA-binding protein 43Homo sapiens (human)
nuclear inner membrane organizationTAR DNA-binding protein 43Homo sapiens (human)
amyloid fibril formationTAR DNA-binding protein 43Homo sapiens (human)
regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (10)

Processvia Protein(s)Taxonomy
RNA polymerase II cis-regulatory region sequence-specific DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
double-stranded DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
RNA bindingTAR DNA-binding protein 43Homo sapiens (human)
mRNA 3'-UTR bindingTAR DNA-binding protein 43Homo sapiens (human)
protein bindingTAR DNA-binding protein 43Homo sapiens (human)
lipid bindingTAR DNA-binding protein 43Homo sapiens (human)
identical protein bindingTAR DNA-binding protein 43Homo sapiens (human)
pre-mRNA intronic bindingTAR DNA-binding protein 43Homo sapiens (human)
molecular condensate scaffold activityTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (9)

Processvia Protein(s)Taxonomy
intracellular non-membrane-bounded organelleTAR DNA-binding protein 43Homo sapiens (human)
nucleusTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
perichromatin fibrilsTAR DNA-binding protein 43Homo sapiens (human)
mitochondrionTAR DNA-binding protein 43Homo sapiens (human)
cytoplasmic stress granuleTAR DNA-binding protein 43Homo sapiens (human)
nuclear speckTAR DNA-binding protein 43Homo sapiens (human)
interchromatin granuleTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
chromatinTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (13)

Assay IDTitleYearJournalArticle
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (5)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's3 (60.00)24.3611
2020's1 (20.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.56

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.56 (24.57)
Research Supply Index1.79 (2.92)
Research Growth Index4.36 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.56)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other5 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]