The compound you described, **2-(3-acetyl-2-methyl-5-phenyl-1-pyrrolyl)-N-(thiophen-2-ylmethyl)acetamide**, is a complex organic molecule that likely holds significant potential for research, especially in the fields of **medicine and material science**.
Here's a breakdown of why it's important:
**Structural Features and Potential Properties:**
* **Pyrrole Ring:** The pyrrole ring is a heterocyclic aromatic ring found in many natural products and pharmaceuticals. It often contributes to biological activity due to its ability to interact with biomolecules like enzymes and receptors.
* **Acetyl Group:** The acetyl group is a common functional group that can influence the molecule's reactivity, solubility, and biological properties.
* **Phenyl Group:** The phenyl group is an aromatic ring known for its stability and potential for interactions with other molecules.
* **Thiophene Ring:** The thiophene ring is a sulfur-containing heterocyclic ring found in various drugs and materials. It can contribute to different properties, including antifungal activity and electronic conductivity.
* **Acetamide Group:** The acetamide group is a common amide group often used in drug design due to its potential for hydrogen bonding and interactions with biological targets.
**Potential Research Applications:**
Based on its structure and potential properties, this compound could be investigated for several research applications:
* **Pharmaceutical Research:** The molecule's diverse functional groups suggest it could possess biological activity. It could be explored as a potential drug candidate for treating various diseases.
* **Material Science:** The presence of aromatic rings and sulfur could make this compound suitable for use in materials science, such as creating conductive polymers or organic semiconductors.
* **Chemical Synthesis:** This molecule could be used as a starting material or intermediate in synthesizing new and potentially valuable compounds.
**Important Considerations:**
* **Detailed Characterization:** To fully understand the potential of this compound, it requires thorough characterization, including determining its physical properties, chemical reactivity, and biological activity.
* **Toxicity and Safety:** Before any potential applications, it's crucial to evaluate the compound's toxicity and safety profile.
**Further Research:**
To understand the true importance of this compound, more research is needed. This includes synthesizing the compound, characterizing its properties, and exploring its potential applications in various fields.
ID Source | ID |
---|---|
PubMed CID | 3242546 |
CHEMBL ID | 1485834 |
CHEBI ID | 109117 |
Synonym |
---|
MLS000047221 , |
smr000033232 |
2-(3-acetyl-2-methyl-5-phenyl-1h-pyrrol-1-yl)-n-(thien-2-ylmethyl)acetamide |
CHEBI:109117 |
AKOS002128044 |
2-(3-acetyl-2-methyl-5-phenylpyrrol-1-yl)-n-(thiophen-2-ylmethyl)acetamide |
MLS004492566 |
HMS2309M06 |
CHEMBL1485834 |
MLS005439398 |
Q27188180 |
2-(3-acetyl-2-methyl-5-phenyl-1-pyrrolyl)-n-(thiophen-2-ylmethyl)acetamide |
Class | Description |
---|---|
pyrroles | An azole that includes only one N atom and no other heteroatom as a part of the aromatic skeleton. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Beta-lactamase | Escherichia coli K-12 | Potency | 10.0000 | 0.0447 | 17.8581 | 100.0000 | AID485294 |
TDP1 protein | Homo sapiens (human) | Potency | 18.8452 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
thyroid stimulating hormone receptor | Homo sapiens (human) | Potency | 15.8489 | 0.0013 | 18.0743 | 39.8107 | AID926; AID938 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 89.1251 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
nuclear factor erythroid 2-related factor 2 isoform 2 | Homo sapiens (human) | Potency | 8.1995 | 0.0041 | 9.9848 | 25.9290 | AID504444 |
peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 | Homo sapiens (human) | Potency | 84.9214 | 0.4256 | 12.0591 | 28.1838 | AID504891 |
muscleblind-like protein 1 isoform 1 | Homo sapiens (human) | Potency | 39.8107 | 0.0041 | 9.9625 | 28.1838 | AID2675 |
lamin isoform A-delta10 | Homo sapiens (human) | Potency | 11.2202 | 0.8913 | 12.0676 | 28.1838 | AID1487 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 31.6228 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
negative regulation of inflammatory response to antigenic stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
renal water homeostasis | Guanine nucleotide-binding protein G | Homo sapiens (human) |
G protein-coupled receptor signaling pathway | Guanine nucleotide-binding protein G | Homo sapiens (human) |
regulation of insulin secretion | Guanine nucleotide-binding protein G | Homo sapiens (human) |
cellular response to glucagon stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |