Page last updated: 2024-12-08

2-(2,4-dichlorophenoxy)-N-(3-pyridinyl)acetamide

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

2-(2,4-dichlorophenoxy)-N-(3-pyridinyl)acetamide, often referred to as **2,4-D-3-pyridyl amide**, is a synthetic compound. It's not a widely known or studied chemical like some of its structural components (like 2,4-D, a common herbicide). Therefore, it's difficult to give a definitive answer to its importance for research.

Here's what we can glean based on its chemical structure and some logical deductions:

**Structure:**

* **2,4-Dichlorophenoxy:** This moiety is characteristic of the herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D).
* **N-(3-pyridinyl)acetamide:** This indicates an acetamide group attached to a nitrogen atom in the 3-position of a pyridine ring.

**Potential Research Significance:**

* **Herbicidal Activity:** Due to the presence of the 2,4-dichlorophenoxy group, this compound may exhibit herbicidal activity. Researchers could be interested in exploring its efficacy, selectivity, and potential environmental impact compared to 2,4-D.
* **Pyridine Derivatives:** Pyridine rings are found in many bioactive compounds. The presence of a pyridine ring attached to the acetamide could potentially influence the compound's biological activity and interaction with biological targets.
* **Lead Compound for Drug Development:** It could serve as a lead compound for developing new herbicides, pesticides, or even drugs with different pharmacological properties. Further modifications and studies on its biological activity and pharmacological effects would be necessary.

**Important Note:** Without specific research publications or data on this compound, it's impossible to definitively state its importance for research.

**To further investigate its potential significance, you would need to:**

* **Search for relevant research publications:** Use scientific databases (like PubMed, Scopus, Google Scholar) to find research papers or patents that specifically mention this compound.
* **Look for related compounds:** Explore the research on similar structures containing 2,4-dichlorophenoxy or 3-pyridinyl groups.
* **Contact researchers in relevant fields:** Reach out to researchers in herbicide chemistry, agrochemistry, or medicinal chemistry who might have insights into this compound.

By doing so, you can gain a better understanding of the specific research areas where this compound might be relevant.

Cross-References

ID SourceID
PubMed CID293807
CHEMBL ID1508637
CHEBI ID108381

Synonyms (20)

Synonym
OPREA1_754634
MLS000719281
smr000291549
AG-690/10414026
2-(2,4-dichlorophenoxy)-n-(3-pyridinyl)acetamide
OPREA1_247221
nsc160949
nsc-160949
25288-49-7
2-(2,4-dichlorophenoxy)-n-(pyridin-3-yl)acetamide
STK181903
CHEBI:108381
AKOS000652422
2-(2,4-dichlorophenoxy)-n-pyridin-3-ylacetamide
HMS2724L17
CHEMBL1508637
Q27187158
Z31791383
DTXSID30948128
2-(2,4-dichlorophenoxy)-n-(pyridin-3-yl)ethanimidic acid
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
dichlorobenzeneAny member of the class of chlorobenzenes carrying two chloro groups at unspecified positions.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (8)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
LuciferasePhotinus pyralis (common eastern firefly)Potency6.74560.007215.758889.3584AID588342
ATAD5 protein, partialHomo sapiens (human)Potency3.45950.004110.890331.5287AID504466; AID504467
TDP1 proteinHomo sapiens (human)Potency12.99530.000811.382244.6684AID686978
nuclear factor erythroid 2-related factor 2 isoform 2Homo sapiens (human)Potency10.32250.00419.984825.9290AID504444
parathyroid hormone/parathyroid hormone-related peptide receptor precursorHomo sapiens (human)Potency79.43283.548119.542744.6684AID743266
DNA polymerase iota isoform a (long)Homo sapiens (human)Potency89.12510.050127.073689.1251AID588590
Rap guanine nucleotide exchange factor 3Homo sapiens (human)Potency35.48136.309660.2008112.2020AID720709
ATP-dependent phosphofructokinaseTrypanosoma brucei brucei TREU927Potency30.54730.060110.745337.9330AID485367; AID504636; AID504637
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (20)

Processvia Protein(s)Taxonomy
angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
adaptive immune responseRap guanine nucleotide exchange factor 3Homo sapiens (human)
signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
adenylate cyclase-activating G protein-coupled receptor signaling pathwayRap guanine nucleotide exchange factor 3Homo sapiens (human)
associative learningRap guanine nucleotide exchange factor 3Homo sapiens (human)
Rap protein signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of actin cytoskeleton organizationRap guanine nucleotide exchange factor 3Homo sapiens (human)
negative regulation of syncytium formation by plasma membrane fusionRap guanine nucleotide exchange factor 3Homo sapiens (human)
intracellular signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of GTPase activityRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of protein export from nucleusRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of stress fiber assemblyRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of syncytium formation by plasma membrane fusionRap guanine nucleotide exchange factor 3Homo sapiens (human)
establishment of endothelial barrierRap guanine nucleotide exchange factor 3Homo sapiens (human)
cellular response to cAMPRap guanine nucleotide exchange factor 3Homo sapiens (human)
Ras protein signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of insulin secretionRap guanine nucleotide exchange factor 3Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (4)

Processvia Protein(s)Taxonomy
guanyl-nucleotide exchange factor activityRap guanine nucleotide exchange factor 3Homo sapiens (human)
protein bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
protein domain specific bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
cAMP bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (8)

Processvia Protein(s)Taxonomy
plasma membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
cortical actin cytoskeletonRap guanine nucleotide exchange factor 3Homo sapiens (human)
plasma membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
microvillusRap guanine nucleotide exchange factor 3Homo sapiens (human)
endomembrane systemRap guanine nucleotide exchange factor 3Homo sapiens (human)
membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
lamellipodiumRap guanine nucleotide exchange factor 3Homo sapiens (human)
filopodiumRap guanine nucleotide exchange factor 3Homo sapiens (human)
extracellular exosomeRap guanine nucleotide exchange factor 3Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (13)

Assay IDTitleYearJournalArticle
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (5)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's3 (60.00)24.3611
2020's1 (20.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.56

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.56 (24.57)
Research Supply Index1.79 (2.92)
Research Growth Index4.36 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.56)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other5 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]