## 2-(1H-indol-3-yl)-2-oxo-N-(2-thiazolyl)acetamide: A Potential Drug Target
**2-(1H-indol-3-yl)-2-oxo-N-(2-thiazolyl)acetamide**, also known as **indomethacin**, is a **nonsteroidal anti-inflammatory drug (NSAID)**. It's a potent inhibitor of **cyclooxygenase (COX)** enzymes, primarily COX-1 and COX-2.
**Why is indomethacin important for research?**
* **Anti-inflammatory effects:** Indomethacin's ability to inhibit COX enzymes makes it effective in reducing inflammation. This is due to its ability to block the production of prostaglandins, which are chemicals that cause inflammation.
* **Pain relief:** Indomethacin is used to treat pain, particularly inflammatory pain associated with conditions like arthritis.
* **Fever reduction:** Indomethacin can also reduce fever by inhibiting the production of prostaglandins that stimulate the hypothalamus, the part of the brain that regulates body temperature.
* **Treatment of various conditions:** Indomethacin is used to treat a wide range of conditions, including:
* **Rheumatoid arthritis:** A chronic inflammatory disorder affecting the joints.
* **Osteoarthritis:** A degenerative joint disease causing cartilage breakdown.
* **Gout:** A condition caused by a buildup of uric acid in the body.
* **Migraines:** Severe headaches that can cause nausea and vomiting.
* **Menstrual cramps:** Painful cramps during menstruation.
* **Pericarditis:** Inflammation of the sac surrounding the heart.
* **Certain types of cancer:** Indomethacin shows potential in inhibiting cancer cell growth.
**Research Focus:**
* **Exploring new applications:** Researchers are exploring new uses for indomethacin, such as its potential in treating cancer and Alzheimer's disease.
* **Improving safety and efficacy:** Research aims to develop safer and more effective formulations of indomethacin, minimizing its potential side effects.
* **Understanding its mechanism of action:** Scientists continue to investigate how indomethacin interacts with various cells and tissues, particularly its interactions with different COX isoforms and other pathways.
* **Developing novel NSAIDs:** Research focuses on designing new NSAIDs with better efficacy and fewer side effects, potentially by targeting specific COX isoforms or exploring other therapeutic targets related to inflammation.
**Overall, indomethacin remains a crucial research subject due to its potent anti-inflammatory properties and its potential for treating various conditions. Research efforts continue to explore its full potential and address its limitations, paving the way for better treatment options in the future.**
ID Source | ID |
---|---|
PubMed CID | 2174681 |
CHEMBL ID | 1517007 |
CHEBI ID | 122123 |
SCHEMBL ID | 11924959 |
Synonym |
---|
STK710836 |
CCG-160196 |
smr000142417 |
MLS000534981 |
2-(1h-indol-3-yl)-2-oxo-n-1,3-thiazol-2-ylacetamide |
CHEBI:122123 |
2-(1h-indol-3-yl)-2-oxo-n-(1,3-thiazol-2-yl)acetamide |
AKOS001880873 |
SCHEMBL11924959 |
HMS2334J21 |
acetamide, 2-(1h-indol-3-yl)-2-oxo-n-thiazol-2-yl- |
QXWUXNUOPOLUHR-UHFFFAOYSA-N |
CHEMBL1517007 |
2-(1h-indol-3-yl)-2-oxo-n-(2-thiazolyl)acetamide |
Q27210764 |
sr-01000251946 |
SR-01000251946-1 |
496028-70-7 |
2-(1h-indol-3-yl)-2-oxo-n~1~-(1,3-thiazol-2-yl)acetamide |
Class | Description |
---|---|
indoles | Any compound containing an indole skeleton. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Luciferase | Photinus pyralis (common eastern firefly) | Potency | 7.5686 | 0.0072 | 15.7588 | 89.3584 | AID588342 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 5.9311 | 0.0041 | 10.8903 | 31.5287 | AID504466; AID504467 |
Microtubule-associated protein tau | Homo sapiens (human) | Potency | 17.7828 | 0.1800 | 13.5574 | 39.8107 | AID1460 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 39.8107 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
nonstructural protein 1 | Influenza A virus (A/WSN/1933(H1N1)) | Potency | 2.2387 | 0.2818 | 9.7212 | 35.4813 | AID2326 |
67.9K protein | Vaccinia virus | Potency | 12.5893 | 0.0001 | 8.4406 | 100.0000 | AID720579 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 22.3872 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
NPC intracellular cholesterol transporter 1 precursor | Homo sapiens (human) | Potency | 3.5481 | 0.0126 | 2.4518 | 25.0177 | AID485313 |
importin subunit beta-1 isoform 1 | Homo sapiens (human) | Potency | 100.0000 | 5.8048 | 36.1306 | 65.1308 | AID540263 |
ras-related protein Rab-9A | Homo sapiens (human) | Potency | 3.1623 | 0.0002 | 2.6215 | 31.4954 | AID485297 |
snurportin-1 | Homo sapiens (human) | Potency | 100.0000 | 5.8048 | 36.1306 | 65.1308 | AID540263 |
survival motor neuron protein isoform d | Homo sapiens (human) | Potency | 11.2202 | 0.1259 | 12.2344 | 35.4813 | AID1458 |
muscleblind-like protein 1 isoform 1 | Homo sapiens (human) | Potency | 14.1254 | 0.0041 | 9.9625 | 28.1838 | AID2675 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 50.1187 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
negative regulation of inflammatory response to antigenic stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
renal water homeostasis | Guanine nucleotide-binding protein G | Homo sapiens (human) |
G protein-coupled receptor signaling pathway | Guanine nucleotide-binding protein G | Homo sapiens (human) |
regulation of insulin secretion | Guanine nucleotide-binding protein G | Homo sapiens (human) |
cellular response to glucagon stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |