Page last updated: 2024-12-09

2-(1-methyl-2-phenyl-3-indolyl)ethanol

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

2-(1-methyl-2-phenyl-3-indolyl)ethanol, also known as **methyl tryptamine**, is a naturally occurring indolealkylamine compound found in various plants and animals.

Here's why it's important for research:

**1. Biological activity and potential therapeutic applications:**

* **Serotonin receptor agonist:** Methyl tryptamine acts as an agonist for serotonin receptors, particularly 5-HT2A and 5-HT1A receptors. This interaction influences mood, cognition, and perception, making it a focus for research into treating depression, anxiety, and other neurological disorders.
* **Hallucinogenic effects:** Methyl tryptamine is known for its hallucinogenic properties, which are attributed to its interaction with serotonin receptors in the brain. This has led to research into the potential use of methyl tryptamine as a tool to study consciousness and altered states of awareness.
* **Antioxidant and anti-inflammatory effects:** Some studies suggest that methyl tryptamine possesses antioxidant and anti-inflammatory properties, potentially contributing to its neuroprotective effects.

**2. Chemical and pharmacological research:**

* **Understanding serotonin signaling:** Methyl tryptamine serves as a valuable tool for understanding the complex mechanisms of serotonin signaling in the brain. Research using this compound has helped elucidate the roles of different serotonin receptor subtypes in various physiological processes.
* **Developing novel drugs:** The pharmacological properties of methyl tryptamine inspire the development of new therapeutic agents. Researchers are exploring its potential to treat various diseases, including Alzheimer's disease, Parkinson's disease, and cancer.
* **Understanding the effects of psychedelics:** As a hallucinogenic compound, methyl tryptamine plays a role in research into the effects of psychedelics on the brain and their potential therapeutic applications.

**3. Naturally occurring in various sources:**

* **Plant-based sources:** Methyl tryptamine can be found in plants like acacia, mimosa, and phalaris. These natural sources have been used for traditional medicinal purposes and have contributed to its importance in ethnobotanical research.
* **Animal sources:** Methyl tryptamine has also been identified in various animals, including humans, suggesting its potential role in biological processes.

**Overall, 2-(1-methyl-2-phenyl-3-indolyl)ethanol (methyl tryptamine) is a significant compound for research due to its multifaceted biological activity, potential therapeutic applications, and role in understanding complex neurological processes.**

**Important Note:** Methyl tryptamine is a Schedule I controlled substance in many countries due to its hallucinogenic properties. Its use and research are subject to strict regulations.

Cross-References

ID SourceID
PubMed CID784721
CHEMBL ID1528128
CHEBI ID119807

Synonyms (13)

Synonym
HMS1682L14
MLS000052989
smr000068945
2-(1-methyl-2-phenyl-1h-indol-3-yl)ethanol
OPREA1_080014
STK091813
CHEBI:119807
2-(1-methyl-2-phenylindol-3-yl)ethanol
AKOS000546959
HMS2363A15
CHEMBL1528128
2-(1-methyl-2-phenyl-3-indolyl)ethanol
Q27207275
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
phenylindole
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (17)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, HADH2 proteinHomo sapiens (human)Potency31.62280.025120.237639.8107AID886; AID893
Chain B, HADH2 proteinHomo sapiens (human)Potency31.62280.025120.237639.8107AID886; AID893
Chain A, JmjC domain-containing histone demethylation protein 3AHomo sapiens (human)Potency39.81070.631035.7641100.0000AID504339
glp-1 receptor, partialHomo sapiens (human)Potency12.58930.01846.806014.1254AID624417
thioredoxin reductaseRattus norvegicus (Norway rat)Potency67.83350.100020.879379.4328AID588453; AID588456
ClpPBacillus subtilisPotency28.18381.995322.673039.8107AID651965
aldehyde dehydrogenase 1 family, member A1Homo sapiens (human)Potency31.62280.011212.4002100.0000AID1030
nonstructural protein 1Influenza A virus (A/WSN/1933(H1N1))Potency19.95260.28189.721235.4813AID2326
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency22.38720.035520.977089.1251AID504332
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1Homo sapiens (human)Potency28.18380.001815.663839.8107AID894
chromobox protein homolog 1Homo sapiens (human)Potency25.11890.006026.168889.1251AID540317
serine/threonine-protein kinase PLK1Homo sapiens (human)Potency26.67950.168316.404067.0158AID720504
nuclear receptor ROR-gamma isoform 1Mus musculus (house mouse)Potency25.11890.00798.23321,122.0200AID2551
VprHuman immunodeficiency virus 1Potency28.18381.584919.626463.0957AID651644
muscleblind-like protein 1 isoform 1Homo sapiens (human)Potency63.09570.00419.962528.1838AID2675
Guanine nucleotide-binding protein GHomo sapiens (human)Potency2.81841.995325.532750.1187AID624288
TAR DNA-binding protein 43Homo sapiens (human)Potency31.62281.778316.208135.4813AID652104
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (23)

Processvia Protein(s)Taxonomy
negative regulation of inflammatory response to antigenic stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
renal water homeostasisGuanine nucleotide-binding protein GHomo sapiens (human)
G protein-coupled receptor signaling pathwayGuanine nucleotide-binding protein GHomo sapiens (human)
regulation of insulin secretionGuanine nucleotide-binding protein GHomo sapiens (human)
cellular response to glucagon stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
negative regulation of protein phosphorylationTAR DNA-binding protein 43Homo sapiens (human)
mRNA processingTAR DNA-binding protein 43Homo sapiens (human)
RNA splicingTAR DNA-binding protein 43Homo sapiens (human)
negative regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
regulation of protein stabilityTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of insulin secretionTAR DNA-binding protein 43Homo sapiens (human)
response to endoplasmic reticulum stressTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of protein import into nucleusTAR DNA-binding protein 43Homo sapiens (human)
regulation of circadian rhythmTAR DNA-binding protein 43Homo sapiens (human)
regulation of apoptotic processTAR DNA-binding protein 43Homo sapiens (human)
negative regulation by host of viral transcriptionTAR DNA-binding protein 43Homo sapiens (human)
rhythmic processTAR DNA-binding protein 43Homo sapiens (human)
regulation of cell cycleTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA destabilizationTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA stabilizationTAR DNA-binding protein 43Homo sapiens (human)
nuclear inner membrane organizationTAR DNA-binding protein 43Homo sapiens (human)
amyloid fibril formationTAR DNA-binding protein 43Homo sapiens (human)
regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (12)

Processvia Protein(s)Taxonomy
G protein activityGuanine nucleotide-binding protein GHomo sapiens (human)
adenylate cyclase activator activityGuanine nucleotide-binding protein GHomo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
double-stranded DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
RNA bindingTAR DNA-binding protein 43Homo sapiens (human)
mRNA 3'-UTR bindingTAR DNA-binding protein 43Homo sapiens (human)
protein bindingTAR DNA-binding protein 43Homo sapiens (human)
lipid bindingTAR DNA-binding protein 43Homo sapiens (human)
identical protein bindingTAR DNA-binding protein 43Homo sapiens (human)
pre-mRNA intronic bindingTAR DNA-binding protein 43Homo sapiens (human)
molecular condensate scaffold activityTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (10)

Processvia Protein(s)Taxonomy
plasma membraneGuanine nucleotide-binding protein GHomo sapiens (human)
intracellular non-membrane-bounded organelleTAR DNA-binding protein 43Homo sapiens (human)
nucleusTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
perichromatin fibrilsTAR DNA-binding protein 43Homo sapiens (human)
mitochondrionTAR DNA-binding protein 43Homo sapiens (human)
cytoplasmic stress granuleTAR DNA-binding protein 43Homo sapiens (human)
nuclear speckTAR DNA-binding protein 43Homo sapiens (human)
interchromatin granuleTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
chromatinTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (15)

Assay IDTitleYearJournalArticle
AID540299A screen for compounds that inhibit the MenB enzyme of Mycobacterium tuberculosis2010Bioorganic & medicinal chemistry letters, Nov-01, Volume: 20, Issue:21
Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis.
AID588519A screen for compounds that inhibit viral RNA polymerase binding and polymerization activities2011Antiviral research, Sep, Volume: 91, Issue:3
High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (7)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (14.29)29.6817
2010's5 (71.43)24.3611
2020's1 (14.29)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.20

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.20 (24.57)
Research Supply Index2.08 (2.92)
Research Growth Index4.28 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.20)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other7 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]