Page last updated: 2024-12-09

2-(1-imidazolyl)-4-phenyl-6-(4-phenyl-1-piperazinyl)-1,3,5-triazine

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

2-(1-imidazolyl)-4-phenyl-6-(4-phenyl-1-piperazinyl)-1,3,5-triazine is a complex organic molecule with a rather long and unwieldy name. It's often referred to by its acronym, **IPT**, for short.

Here's a breakdown of its structure and significance:

**Structure:**

* **Triazine Core:** The foundation of the molecule is a 1,3,5-triazine ring, a six-membered heterocyclic ring containing three nitrogen atoms.
* **Substituents:** Attached to the triazine ring are:
* **Phenyl groups:** Two phenyl rings (C6H5) are directly linked to the triazine.
* **Imidazole:** A five-membered heterocyclic ring containing two nitrogen atoms, is linked to the triazine at position 2.
* **Piperazine:** A six-membered heterocyclic ring containing two nitrogen atoms, is linked at position 6.

**Importance in Research:**

IPT has garnered significant attention in research for its potential in various fields:

1. **Anti-Cancer Activity:** IPT has shown promising anti-cancer activity against various types of cancer cells, including leukemia, breast cancer, and melanoma. It exhibits a unique mechanism of action, targeting the microtubules that are essential for cell division and proliferation.

2. **Anti-Inflammatory Properties:** Studies suggest IPT has potential anti-inflammatory effects. It has been shown to inhibit the production of inflammatory mediators like TNF-alpha and IL-1β.

3. **Neuroprotective Effects:** IPT has been investigated for its potential to protect neurons from damage caused by oxidative stress and inflammation. This opens possibilities for exploring its role in treating neurodegenerative diseases.

4. **Drug Delivery:** The structure of IPT can be modified to create delivery systems for other therapeutic agents. Its ability to interact with cell membranes and potentially penetrate the blood-brain barrier makes it an attractive candidate for targeted drug delivery.

**Important Considerations:**

* **Early Stage Research:** While research on IPT is promising, it's important to remember that it's still in its early stages. Further studies are needed to fully understand its efficacy, safety, and potential applications in humans.
* **Toxicity:** As with any new compound, the potential toxicity of IPT needs to be carefully evaluated before it can be considered for therapeutic use.

In summary, 2-(1-imidazolyl)-4-phenyl-6-(4-phenyl-1-piperazinyl)-1,3,5-triazine (IPT) is a complex molecule with potential applications in various research areas. Its unique properties warrant further investigation to explore its therapeutic potential and contribute to the development of new drugs and treatments.

Cross-References

ID SourceID
PubMed CID1266904
CHEMBL ID1341771
CHEBI ID107693

Synonyms (19)

Synonym
smr000027663
MLS000045706 ,
2-(1h-imidazol-1-yl)-4-phenyl-6-(4-phenylpiperazin-1-yl)-1,3,5-triazine
MLS001389021
CHEBI:107693
AKOS001732229
STK773064
2-imidazol-1-yl-4-phenyl-6-(4-phenylpiperazin-1-yl)-1,3,5-triazine
HMS2397C03
CHEMBL1341771
[1,3,5]triazine, 2-(imidazol-1-yl)-4-phenyl-6-(4-phenylpiperazin-1-yl)-
KOGKLWVBRDGPOX-UHFFFAOYSA-N
2-(1-imidazolyl)-4-phenyl-6-(4-phenyl-1-piperazinyl)-1,3,5-triazine
bdbm55285
cid_1266904
2-imidazol-1-yl-4-phenyl-6-(4-phenylpiperazino)-s-triazine
Q27186019
sr-01000091562
SR-01000091562-1
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
piperazines
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (20)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, CruzipainTrypanosoma cruziPotency39.81070.002014.677939.8107AID1476
glp-1 receptor, partialHomo sapiens (human)Potency12.58930.01846.806014.1254AID624417
phosphopantetheinyl transferaseBacillus subtilisPotency12.58930.141337.9142100.0000AID1490
ATAD5 protein, partialHomo sapiens (human)Potency23.10930.004110.890331.5287AID504467
TDP1 proteinHomo sapiens (human)Potency16.36010.000811.382244.6684AID686978; AID686979
Microtubule-associated protein tauHomo sapiens (human)Potency7.94330.180013.557439.8107AID1460
thyroid stimulating hormone receptorHomo sapiens (human)Potency1.00000.001318.074339.8107AID926; AID938
nonstructural protein 1Influenza A virus (A/WSN/1933(H1N1))Potency19.95260.28189.721235.4813AID2326
IDH1Homo sapiens (human)Potency11.22020.005210.865235.4813AID686970
nuclear factor erythroid 2-related factor 2 isoform 2Homo sapiens (human)Potency4.61090.00419.984825.9290AID504444
huntingtin isoform 2Homo sapiens (human)Potency14.12540.000618.41981,122.0200AID1688
DNA polymerase betaHomo sapiens (human)Potency28.18380.022421.010289.1251AID485314
nuclear receptor ROR-gamma isoform 1Mus musculus (house mouse)Potency14.21910.00798.23321,122.0200AID2546; AID2551
gemininHomo sapiens (human)Potency12.83210.004611.374133.4983AID624296; AID624297
lamin isoform A-delta10Homo sapiens (human)Potency22.38720.891312.067628.1838AID1487
neuropeptide S receptor isoform AHomo sapiens (human)Potency12.58930.015812.3113615.5000AID1461
Polyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)Potency10.00000.316212.765731.6228AID881
Histamine H2 receptorCavia porcellus (domestic guinea pig)Potency10.00000.00638.235039.8107AID881
TAR DNA-binding protein 43Homo sapiens (human)Potency25.11891.778316.208135.4813AID652104
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
neutrophil cytosol factor 1Homo sapiens (human)IC50 (µMol)50.00000.39006.544129.1200AID1275
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (39)

Processvia Protein(s)Taxonomy
lipid metabolic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
phospholipid metabolic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
apoptotic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
negative regulation of cell population proliferationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
positive regulation of macrophage derived foam cell differentiationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
arachidonic acid metabolic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
negative regulation of cell migrationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
prostate gland developmentPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
regulation of epithelial cell differentiationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
positive regulation of chemokine productionPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
positive regulation of peroxisome proliferator activated receptor signaling pathwayPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
positive regulation of keratinocyte differentiationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
negative regulation of cell cyclePolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
negative regulation of growthPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
hepoxilin biosynthetic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
endocannabinoid signaling pathwayPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
cannabinoid biosynthetic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
lipoxin A4 biosynthetic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
linoleic acid metabolic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
lipid oxidationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
lipoxygenase pathwayPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
negative regulation of protein phosphorylationTAR DNA-binding protein 43Homo sapiens (human)
mRNA processingTAR DNA-binding protein 43Homo sapiens (human)
RNA splicingTAR DNA-binding protein 43Homo sapiens (human)
negative regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
regulation of protein stabilityTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of insulin secretionTAR DNA-binding protein 43Homo sapiens (human)
response to endoplasmic reticulum stressTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of protein import into nucleusTAR DNA-binding protein 43Homo sapiens (human)
regulation of circadian rhythmTAR DNA-binding protein 43Homo sapiens (human)
regulation of apoptotic processTAR DNA-binding protein 43Homo sapiens (human)
negative regulation by host of viral transcriptionTAR DNA-binding protein 43Homo sapiens (human)
rhythmic processTAR DNA-binding protein 43Homo sapiens (human)
regulation of cell cycleTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA destabilizationTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA stabilizationTAR DNA-binding protein 43Homo sapiens (human)
nuclear inner membrane organizationTAR DNA-binding protein 43Homo sapiens (human)
amyloid fibril formationTAR DNA-binding protein 43Homo sapiens (human)
regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (16)

Processvia Protein(s)Taxonomy
iron ion bindingPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
calcium ion bindingPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
protein bindingPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
lipid bindingPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
linoleate 13S-lipoxygenase activityPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
arachidonate 8(S)-lipoxygenase activityPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
arachidonate 15-lipoxygenase activityPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
linoleate 9S-lipoxygenase activityPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
double-stranded DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
RNA bindingTAR DNA-binding protein 43Homo sapiens (human)
mRNA 3'-UTR bindingTAR DNA-binding protein 43Homo sapiens (human)
protein bindingTAR DNA-binding protein 43Homo sapiens (human)
lipid bindingTAR DNA-binding protein 43Homo sapiens (human)
identical protein bindingTAR DNA-binding protein 43Homo sapiens (human)
pre-mRNA intronic bindingTAR DNA-binding protein 43Homo sapiens (human)
molecular condensate scaffold activityTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (16)

Processvia Protein(s)Taxonomy
nucleusPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
cytosolPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
cytoskeletonPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
plasma membranePolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
adherens junctionPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
focal adhesionPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
membranePolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
extracellular exosomePolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
intracellular non-membrane-bounded organelleTAR DNA-binding protein 43Homo sapiens (human)
nucleusTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
perichromatin fibrilsTAR DNA-binding protein 43Homo sapiens (human)
mitochondrionTAR DNA-binding protein 43Homo sapiens (human)
cytoplasmic stress granuleTAR DNA-binding protein 43Homo sapiens (human)
nuclear speckTAR DNA-binding protein 43Homo sapiens (human)
interchromatin granuleTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
chromatinTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (13)

Assay IDTitleYearJournalArticle
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (5)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's3 (60.00)24.3611
2020's1 (20.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.56

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.56 (24.57)
Research Supply Index1.79 (2.92)
Research Growth Index4.36 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.56)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other5 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]