18-Hydroxy-11,17-dimethoxyyohimban-16-carboxylic acid, often referred to as **18-Hydroxy-yohimbine**, is a naturally occurring indole alkaloid found in plants of the *Yohimbe* genus. It's a structural analog of yohimbine, a well-known compound with a range of pharmacological activities, including:
* **Alpha-2 adrenergic receptor antagonist:** Yohimbine and its analogs block the action of norepinephrine and epinephrine at these receptors, potentially leading to increased arousal, blood pressure, and heart rate.
* **Antidepressant properties:** Some research suggests yohimbine can improve symptoms of depression, possibly by affecting serotonin and dopamine levels.
* **Potential for erectile dysfunction treatment:** Yohimbine is marketed as an aphrodisiac and potential treatment for erectile dysfunction, although its effectiveness is debatable.
* **Other effects:** Yohimbine has also been investigated for its potential use in treating fatigue, anxiety, and other conditions.
**Importance for Research:**
18-Hydroxy-yohimbine is of research interest for several reasons:
* **Structure-activity relationship studies:** Understanding the differences in pharmacological effects between 18-Hydroxy-yohimbine and yohimbine can help researchers understand how specific structural modifications influence the activity of these compounds. This can lead to the development of more potent and selective drugs with fewer side effects.
* **New drug discovery:** 18-Hydroxy-yohimbine itself may have therapeutic potential, offering unique benefits compared to yohimbine. Research exploring its specific effects and applications is ongoing.
* **Understanding the role of natural products in health:** Investigating the pharmacological activities of naturally occurring compounds like 18-Hydroxy-yohimbine can contribute to the development of novel therapeutic agents and better understanding of traditional medicinal practices.
**However, it's crucial to note that:**
* 18-Hydroxy-yohimbine is a relatively understudied compound, and much research is still needed to understand its full potential and safety profile.
* The use of yohimbine and its analogs should be carefully considered due to potential side effects, such as anxiety, restlessness, increased heart rate, and gastrointestinal distress.
* It's essential to consult with a healthcare professional before using any supplements or medications containing these compounds.
In summary, 18-Hydroxy-yohimbine is a fascinating compound with potential for research and drug development. However, further investigation is needed to fully understand its pharmacological properties and safety profile.
ID Source | ID |
---|---|
PubMed CID | 419781 |
CHEMBL ID | 1570525 |
CHEBI ID | 181717 |
SCHEMBL ID | 14286189 |
Synonym |
---|
17-hydroxy-6,18-dimethoxy-1,3,11,12,14,15,16,17,18,19,20,21-dodecahydroyohimban-19-carboxylic acid |
CHEBI:181717 |
18-hydroxy-11,17-dimethoxyyohimban-16-carboxylic acid |
mls000737091 , |
smr000528366 |
HMS2268I03 |
CHEMBL1570525 |
bdbm52830 |
cid_419781 |
6,18-dimethoxy-17-oxidanyl-1,3,11,12,14,15,16,17,18,19,20,21-dodecahydroyohimban-19-carboxylic acid |
SCHEMBL14286189 |
DTXSID70871562 |
Class | Description |
---|---|
alkaloid | Any of the naturally occurring, basic nitrogen compounds (mostly heterocyclic) occurring mostly in the plant kingdom, but also found in bacteria, fungi, and animals. By extension, certain neutral compounds biogenetically related to basic alkaloids are also classed as alkaloids. Amino acids, peptides, proteins, nucleotides, nucleic acids, amino sugars and antibiotics are not normally regarded as alkaloids. Compounds in which the nitrogen is exocyclic (dopamine, mescaline, serotonin, etc.) are usually classed as amines rather than alkaloids. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, 2-oxoglutarate Oxygenase | Homo sapiens (human) | Potency | 25.1189 | 0.1778 | 14.3909 | 39.8107 | AID2147 |
acid sphingomyelinase | Homo sapiens (human) | Potency | 19.9526 | 14.1254 | 24.0613 | 39.8107 | AID504937 |
USP1 protein, partial | Homo sapiens (human) | Potency | 31.6228 | 0.0316 | 37.5844 | 354.8130 | AID743255 |
Microtubule-associated protein tau | Homo sapiens (human) | Potency | 31.6228 | 0.1800 | 13.5574 | 39.8107 | AID1460 |
Bloom syndrome protein isoform 1 | Homo sapiens (human) | Potency | 39.8107 | 0.5406 | 17.6392 | 96.1227 | AID2528 |
chromobox protein homolog 1 | Homo sapiens (human) | Potency | 2.2387 | 0.0060 | 26.1688 | 89.1251 | AID540317 |
importin subunit beta-1 isoform 1 | Homo sapiens (human) | Potency | 64.4679 | 5.8048 | 36.1306 | 65.1308 | AID540253; AID540263 |
snurportin-1 | Homo sapiens (human) | Potency | 64.4679 | 5.8048 | 36.1306 | 65.1308 | AID540253; AID540263 |
peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 | Homo sapiens (human) | Potency | 50.1187 | 0.4256 | 12.0591 | 28.1838 | AID504891 |
GTP-binding nuclear protein Ran isoform 1 | Homo sapiens (human) | Potency | 39.8107 | 5.8048 | 16.9962 | 25.9290 | AID540253 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 100.0000 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
POsterior Segregation | Caenorhabditis elegans | EC50 (µMol) | 300.0000 | 2.2010 | 47.1808 | 186.6810 | AID1964 |
Sodium-dependent noradrenaline transporter | Homo sapiens (human) | EC50 (µMol) | 300.0000 | 0.0820 | 31.0243 | 168.9080 | AID1960 |
Zinc finger protein mex-5 | Caenorhabditis elegans | EC50 (µMol) | 300.0000 | 0.0820 | 33.5679 | 168.9080 | AID1960 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Sodium-dependent noradrenaline transporter | Homo sapiens (human) |
cell surface | Sodium-dependent noradrenaline transporter | Homo sapiens (human) |
membrane | Sodium-dependent noradrenaline transporter | Homo sapiens (human) |
neuronal cell body membrane | Sodium-dependent noradrenaline transporter | Homo sapiens (human) |
presynaptic membrane | Sodium-dependent noradrenaline transporter | Homo sapiens (human) |
plasma membrane | Sodium-dependent noradrenaline transporter | Homo sapiens (human) |
axon | Sodium-dependent noradrenaline transporter | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |