1,4-dimethyl-6-nitro-9H-carbazole is an organic compound with the chemical formula C14H12N2O2. Here's a breakdown of its structure and significance:
**Structure:**
* **Carbazole core:** The molecule is based on the carbazole structure, a tricyclic aromatic compound. This core consists of three fused rings: two benzene rings and a five-membered pyrrole ring.
* **Substituents:** The core carbazole is modified with the following substituents:
* **Methyl groups (CH3):** Two methyl groups are attached at positions 1 and 4 on the carbazole ring.
* **Nitro group (NO2):** A nitro group is attached at position 6 on the carbazole ring.
* **Hydrogen atom:** A hydrogen atom is attached at position 9, giving the molecule its 9H designation.
**Importance in Research:**
1,4-dimethyl-6-nitro-9H-carbazole has gained significant research interest due to its potential applications in various fields, including:
* **Organic Electronics:**
* **Organic semiconductors:** This molecule exhibits semiconductor properties, making it useful in the development of organic transistors, solar cells, and other organic electronic devices.
* **Charge transport:** The presence of the nitro group enhances electron-withdrawing capabilities, leading to improved charge transport properties.
* **Organic light-emitting diodes (OLEDs):** Carbazole derivatives like this are used in OLED technology for their ability to emit light efficiently.
* **Materials Science:**
* **Polymer chemistry:** Carbazole derivatives are employed as monomers in the synthesis of polymers with specific properties, such as conductivity, fluorescence, and thermal stability.
* **Metal-organic frameworks (MOFs):** Carbazole-based ligands can be used to synthesize MOFs with interesting properties, like gas storage and catalysis.
* **Medicinal Chemistry:**
* **Drug discovery:** The nitrogen atom in the carbazole core and the electron-withdrawing nature of the nitro group make this molecule a potential pharmacophore for developing new drugs.
* **Antimicrobial activity:** Some carbazole derivatives exhibit antimicrobial activity against bacteria and fungi.
**Ongoing Research:**
Researchers are continuously exploring the potential of 1,4-dimethyl-6-nitro-9H-carbazole and related compounds for various applications. These include:
* **Tuning electronic properties:** Exploring modifications to the carbazole core and substituents to optimize its conductivity and charge transport properties.
* **Developing novel materials:** Synthesizing new carbazole-based polymers and MOFs with enhanced functionality.
* **Identifying biological targets:** Investigating the interaction of this molecule with various biological targets to develop potential therapeutic agents.
**Note:** While this compound shows promise in various research areas, further research is needed to fully understand its potential and develop practical applications.
ID Source | ID |
---|---|
PubMed CID | 154436 |
CHEMBL ID | 1484180 |
CHEBI ID | 108495 |
SCHEMBL ID | 15202149 |
Synonym |
---|
1,4-dimethyl-6-nitro-9h-carbazole |
smr000126250 |
MLS000541392 |
9h-carbazole, 1,4-dimethyl-6-nitro- |
5,8-dimethyl-3-nitrocarbazole |
CHEBI:108495 |
AKOS005081577 |
NCGC00246582-01 |
133591-38-5 |
ccris 8641 |
HMS2342G16 |
CHEMBL1484180 |
12W-0853 |
SCHEMBL15202149 |
Q27187383 |
DTXSID20158193 |
Class | Description |
---|---|
carbazoles | |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Beta-lactamase | Escherichia coli K-12 | Potency | 6.3096 | 0.0447 | 17.8581 | 100.0000 | AID485341 |
Chain A, Ferritin light chain | Equus caballus (horse) | Potency | 50.1187 | 5.6234 | 17.2929 | 31.6228 | AID485281 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 12.5893 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
TDP1 protein | Homo sapiens (human) | Potency | 16.4687 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
Microtubule-associated protein tau | Homo sapiens (human) | Potency | 18.8541 | 0.1800 | 13.5574 | 39.8107 | AID1460; AID1468 |
nonstructural protein 1 | Influenza A virus (A/WSN/1933(H1N1)) | Potency | 12.5893 | 0.2818 | 9.7212 | 35.4813 | AID2326 |
nuclear factor erythroid 2-related factor 2 isoform 2 | Homo sapiens (human) | Potency | 10.3225 | 0.0041 | 9.9848 | 25.9290 | AID504444 |
importin subunit beta-1 isoform 1 | Homo sapiens (human) | Potency | 35.4813 | 5.8048 | 36.1306 | 65.1308 | AID540263 |
snurportin-1 | Homo sapiens (human) | Potency | 35.4813 | 5.8048 | 36.1306 | 65.1308 | AID540263 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 79.4328 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 35.4813 | 0.0079 | 8.2332 | 1,122.0200 | AID2551 |
Vpr | Human immunodeficiency virus 1 | Potency | 39.8107 | 1.5849 | 19.6264 | 63.0957 | AID651644 |
lamin isoform A-delta10 | Homo sapiens (human) | Potency | 35.4813 | 0.8913 | 12.0676 | 28.1838 | AID1487 |
TAR DNA-binding protein 43 | Homo sapiens (human) | Potency | 2.5119 | 1.7783 | 16.2081 | 35.4813 | AID652104 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
RNA polymerase II cis-regulatory region sequence-specific DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
double-stranded DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
RNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
mRNA 3'-UTR binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
protein binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
lipid binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
identical protein binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
pre-mRNA intronic binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
molecular condensate scaffold activity | TAR DNA-binding protein 43 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
intracellular non-membrane-bounded organelle | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleus | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleoplasm | TAR DNA-binding protein 43 | Homo sapiens (human) |
perichromatin fibrils | TAR DNA-binding protein 43 | Homo sapiens (human) |
mitochondrion | TAR DNA-binding protein 43 | Homo sapiens (human) |
cytoplasmic stress granule | TAR DNA-binding protein 43 | Homo sapiens (human) |
nuclear speck | TAR DNA-binding protein 43 | Homo sapiens (human) |
interchromatin granule | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleoplasm | TAR DNA-binding protein 43 | Homo sapiens (human) |
chromatin | TAR DNA-binding protein 43 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |