Page last updated: 2024-12-06

1,3,7-trimethyl-8-(phenylmethyl)purine-2,6-dione

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

1,3,7-trimethyl-8-(phenylmethyl)purine-2,6-dione, also known as **caffeine**, is a naturally occurring psychoactive alkaloid.

Here's why it's important in research:

**1. Pharmacology and Neurochemistry:**

* **Adenosine Receptor Antagonism:** Caffeine's primary mechanism of action is its antagonism of adenosine receptors in the brain. Adenosine is a neuromodulator that promotes sleepiness and inhibits neuronal activity. Caffeine blocks adenosine from binding to its receptors, leading to increased neuronal activity and alertness.
* **Central Nervous System Stimulant:** This antagonism of adenosine receptors explains caffeine's stimulant effects, including increased alertness, focus, and reduced fatigue.
* **Metabolic Effects:** Caffeine can increase metabolism, leading to an increased metabolic rate and potentially aiding in weight management (though this effect is debated).
* **Cardiovascular Effects:** Caffeine can increase heart rate and blood pressure, which is a concern for individuals with cardiovascular problems.

**2. Clinical Applications:**

* **Treatment of Migraines:** Caffeine is often included in migraine medications as it can help to constrict blood vessels and reduce inflammation.
* **Cognitive Enhancement:** Caffeine is widely consumed for its ability to improve alertness, focus, and cognitive performance. Research suggests it may enhance short-term memory, attention, and reaction time.
* **Treatment of Asthma:** Caffeine has been shown to relax airway smooth muscles, which may help to alleviate asthma symptoms.

**3. Research into Caffeine's Mechanisms:**

* **Neuroprotective Effects:** Caffeine has been linked to potential neuroprotective effects, potentially reducing the risk of neurodegenerative diseases such as Parkinson's and Alzheimer's.
* **Cancer Research:** Some studies suggest caffeine may have anticancer properties, though more research is needed.
* **Addiction and Withdrawal:** Caffeine is a widely used and potentially addictive substance. Research investigates its effects on addiction and withdrawal symptoms.

**4. Model for Understanding Adenosine System:**

* **Adenosine Receptor Study:** Caffeine is a valuable tool for studying the role of adenosine receptors in the brain and body. Understanding its effects can provide insights into various physiological processes.

Overall, caffeine is an important research subject due to its widespread use, physiological effects, and potential therapeutic applications. Understanding its mechanisms of action can lead to new treatments for various conditions and further insights into the human brain and body.

Cross-References

ID SourceID
PubMed CID21551
CHEMBL ID483661
CHEBI ID121806
SCHEMBL ID3099603

Synonyms (26)

Synonym
8-benzyl-caffeine
caffeine, 8-benzyl-
brn 0298246
nsc 14396
1h-purine-2,6-dione, 3,7-dihydro-1,3,7-trimethyl-8-(phenylmethyl)-
nsc14396
5426-88-0
mls000737468 ,
1h-purine-2, 3,7-dihydro-1,3,7-trimethyl-8-(phenylmethyl)-
nsc-14396
OPREA1_300507
1h-purine-2,6-dione, 3,7-dihydro-1,3, 7-trimethyl-8- (phenylmethyl)-
smr000528153
CHEBI:121806
CHEMBL483661
NCGC00246743-01
unii-h0o8qgm8zc
8-benzylcaffeine
h0o8qgm8zc ,
4-26-00-02535 (beilstein handbook reference)
HMS2856D22
SCHEMBL3099603
Q27210378
DTXSID50202618
1,3,7-trimethyl-8-(phenylmethyl)purine-2,6-dione
3,7-dihydro-1,3,7-trimethyl-8-(phenylmethyl)-1h-purine-2,6-dione
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
oxopurine
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (5)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
chromobox protein homolog 1Homo sapiens (human)Potency100.00000.006026.168889.1251AID540317
histone acetyltransferase KAT2A isoform 1Homo sapiens (human)Potency0.79430.251215.843239.8107AID504327
relaxin receptor 1 isoform 1Homo sapiens (human)Potency28.18380.038814.350143.6206AID2676
Rap guanine nucleotide exchange factor 3Homo sapiens (human)Potency100.00006.309660.2008112.2020AID720709
Guanine nucleotide-binding protein GHomo sapiens (human)Potency5.01191.995325.532750.1187AID624287
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (24)

Processvia Protein(s)Taxonomy
angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
adaptive immune responseRap guanine nucleotide exchange factor 3Homo sapiens (human)
signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
adenylate cyclase-activating G protein-coupled receptor signaling pathwayRap guanine nucleotide exchange factor 3Homo sapiens (human)
associative learningRap guanine nucleotide exchange factor 3Homo sapiens (human)
Rap protein signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of actin cytoskeleton organizationRap guanine nucleotide exchange factor 3Homo sapiens (human)
negative regulation of syncytium formation by plasma membrane fusionRap guanine nucleotide exchange factor 3Homo sapiens (human)
intracellular signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of GTPase activityRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of protein export from nucleusRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of stress fiber assemblyRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of syncytium formation by plasma membrane fusionRap guanine nucleotide exchange factor 3Homo sapiens (human)
establishment of endothelial barrierRap guanine nucleotide exchange factor 3Homo sapiens (human)
cellular response to cAMPRap guanine nucleotide exchange factor 3Homo sapiens (human)
Ras protein signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of insulin secretionRap guanine nucleotide exchange factor 3Homo sapiens (human)
negative regulation of inflammatory response to antigenic stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
renal water homeostasisGuanine nucleotide-binding protein GHomo sapiens (human)
G protein-coupled receptor signaling pathwayGuanine nucleotide-binding protein GHomo sapiens (human)
regulation of insulin secretionGuanine nucleotide-binding protein GHomo sapiens (human)
cellular response to glucagon stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (6)

Processvia Protein(s)Taxonomy
guanyl-nucleotide exchange factor activityRap guanine nucleotide exchange factor 3Homo sapiens (human)
protein bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
protein domain specific bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
cAMP bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
G protein activityGuanine nucleotide-binding protein GHomo sapiens (human)
adenylate cyclase activator activityGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (8)

Processvia Protein(s)Taxonomy
plasma membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
cortical actin cytoskeletonRap guanine nucleotide exchange factor 3Homo sapiens (human)
plasma membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
microvillusRap guanine nucleotide exchange factor 3Homo sapiens (human)
endomembrane systemRap guanine nucleotide exchange factor 3Homo sapiens (human)
membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
lamellipodiumRap guanine nucleotide exchange factor 3Homo sapiens (human)
filopodiumRap guanine nucleotide exchange factor 3Homo sapiens (human)
extracellular exosomeRap guanine nucleotide exchange factor 3Homo sapiens (human)
plasma membraneGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (14)

Assay IDTitleYearJournalArticle
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID387201Inhibition of baboon liver mitochondrial monoamine oxidase B at 1000 uM by spectrophotometry2008Bioorganic & medicinal chemistry, Sep-15, Volume: 16, Issue:18
Dual inhibition of monoamine oxidase B and antagonism of the adenosine A(2A) receptor by (E,E)-8-(4-phenylbutadien-1-yl)caffeine analogues.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (6)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (33.33)29.6817
2010's3 (50.00)24.3611
2020's1 (16.67)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.41

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.41 (24.57)
Research Supply Index1.95 (2.92)
Research Growth Index4.36 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.41)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other6 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]