You're asking about a specific chemical compound: **1-(6-methyl-2-pyridinyl)-3-(2-phenylethyl)thiourea**.
**Understanding the Compound:**
* **Structure:** This compound is a thiourea derivative. Thioureas are organic compounds containing a carbon atom double-bonded to a sulfur atom and single-bonded to two nitrogen atoms.
* **Substituents:** The compound has two key substituents:
* **6-methyl-2-pyridinyl:** This is a pyridyl ring (a six-membered nitrogen-containing ring) with a methyl group at the 6th position and a nitrogen atom at the 2nd position.
* **2-phenylethyl:** This is a phenyl group (a benzene ring) attached to an ethyl group (two carbon chain).
* **Overall Structure:** The thiourea group connects the pyridinyl and phenylethyl substituents.
**Why it Might be Important for Research:**
You're right to ask why this compound is important. It's unlikely to be a well-known, widely studied compound. Here's why:
* **Potential Applications:**
* **Pharmacology:** Thioureas are known to have a variety of biological activities, including anti-inflammatory, anti-cancer, and antimicrobial properties. This specific compound, with its unique structure, might exhibit interesting pharmacological effects.
* **Materials Science:** Thioureas can act as building blocks for polymers and other materials, and the specific substituents might influence their properties.
* **Novelty:** Given its unique structure, it's possible this compound hasn't been studied extensively before.
* **Synthetic Challenge:** The synthesis of thiourea derivatives can be challenging, and this specific compound might be a target for synthetic chemists.
**To find out more about this compound, you would need to:**
* **Search scientific databases:** Use databases like SciFinder, PubMed, and Reaxys to see if any research has been done on this specific compound or similar thiourea derivatives.
* **Contact researchers:** Reach out to experts in the fields of organic chemistry, medicinal chemistry, or materials science to inquire about their knowledge or ongoing research related to this type of compound.
**Remember:** The importance of a chemical compound is often determined by the specific research question being investigated. Without more context about the research goals, it's difficult to say definitively why this specific compound is important.
ID Source | ID |
---|---|
PubMed CID | 1952370 |
CHEMBL ID | 1331816 |
CHEBI ID | 108968 |
Synonym |
---|
smr000294842 |
MLS000664897 |
n-(6-methyl-2-pyridinyl)-n'-(2-phenylethyl)thiourea |
1-(6-methylpyridin-2-yl)-3-(2-phenylethyl)thiourea |
STK164818 |
CHEBI:108968 |
AKOS001094219 |
HMS2696I16 |
CHEMBL1331816 |
Q27187945 |
1-(6-methyl-2-pyridinyl)-3-(2-phenylethyl)thiourea |
SR-01000281317-1 |
sr-01000281317 |
Class | Description |
---|---|
methylpyridines | Any member of the class of pyridines that carries at least one methyl substituent. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Putative fructose-1,6-bisphosphate aldolase | Giardia intestinalis | Potency | 15.8114 | 0.1409 | 11.1940 | 39.8107 | AID2451 |
Chain A, 2-oxoglutarate Oxygenase | Homo sapiens (human) | Potency | 25.1189 | 0.1778 | 14.3909 | 39.8107 | AID2147 |
Luciferase | Photinus pyralis (common eastern firefly) | Potency | 37.9330 | 0.0072 | 15.7588 | 89.3584 | AID588342 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 7.0795 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
phosphopantetheinyl transferase | Bacillus subtilis | Potency | 56.2341 | 0.1413 | 37.9142 | 100.0000 | AID1490 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 32.6294 | 0.0041 | 10.8903 | 31.5287 | AID504467 |
TDP1 protein | Homo sapiens (human) | Potency | 24.5014 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
thioredoxin glutathione reductase | Schistosoma mansoni | Potency | 28.1838 | 0.1000 | 22.9075 | 100.0000 | AID485364 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 25.1189 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
67.9K protein | Vaccinia virus | Potency | 11.2202 | 0.0001 | 8.4406 | 100.0000 | AID720579 |
serine/threonine-protein kinase PLK1 | Homo sapiens (human) | Potency | 33.5875 | 0.1683 | 16.4040 | 67.0158 | AID720504 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 56.2341 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 1.8623 | 0.0079 | 8.2332 | 1,122.0200 | AID2546; AID2551 |
geminin | Homo sapiens (human) | Potency | 14.5810 | 0.0046 | 11.3741 | 33.4983 | AID624297 |
DNA dC->dU-editing enzyme APOBEC-3F isoform a | Homo sapiens (human) | Potency | 6.3096 | 0.0259 | 11.2398 | 31.6228 | AID602313 |
lamin isoform A-delta10 | Homo sapiens (human) | Potency | 19.9526 | 0.8913 | 12.0676 | 28.1838 | AID1487 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |