1-(5-tert-butyl-1,3,4-thiadiazol-2-yl)-3-(4-chlorophenyl)urea is a **synthetic compound** that belongs to the **urea family**, specifically **substituted thiadiazoles**. It's often referred to as **TH-302** in scientific literature.
**Why is it important for research?**
TH-302 has shown **potential in multiple research areas**:
* **Anti-inflammatory activity:** It has been investigated for its ability to suppress inflammation, making it relevant for studying and potentially treating inflammatory conditions.
* **Analgesic activity:** TH-302 has also demonstrated potential pain-relieving properties, which opens up avenues for research into pain management strategies.
* **Anticancer activity:** Some studies suggest that TH-302 might have anti-cancer activity, targeting specific cancer cell types. This is an active area of ongoing research.
* **Other potential applications:** TH-302's unique structure and biological activity could lead to its use in developing new pharmaceuticals, agricultural chemicals, or other materials.
**Important Note:** It's crucial to remember that TH-302 is still under investigation. While the research looks promising, its safety and efficacy for human use haven't been fully established. It's essential to rely on scientific publications and consult healthcare professionals for accurate information on its potential applications.
**To summarize:** TH-302 is a promising compound with potential applications in treating inflammation, pain, and even cancer. Further research is needed to fully understand its therapeutic value and safety profile.
ID Source | ID |
---|---|
PubMed CID | 741053 |
CHEMBL ID | 1374433 |
CHEBI ID | 105503 |
Synonym |
---|
CBMICRO_022696 |
OPREA1_653727 |
BIM-0022549.P001 |
1-(5-tert-butyl-[1,3,4]thiadiazol-2-yl)-3-(4-chloro-phenyl)-urea |
smr000433656 |
MLS000768903 |
CHEBI:105503 |
STK828047 |
1-(5-tert-butyl-1,3,4-thiadiazol-2-yl)-3-(4-chlorophenyl)urea |
AKOS001595122 |
CCG-9804 |
HMS2804I20 |
CHEMBL1374433 |
Q27183248 |
SR-01000211294-1 |
sr-01000211294 |
Class | Description |
---|---|
ureas | |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, MAJOR APURINIC/APYRIMIDINIC ENDONUCLEASE | Homo sapiens (human) | Potency | 3.5481 | 0.0032 | 45.4673 | 12,589.2998 | AID2517 |
TDP1 protein | Homo sapiens (human) | Potency | 12.7800 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
NPC intracellular cholesterol transporter 1 precursor | Homo sapiens (human) | Potency | 2.5119 | 0.0126 | 2.4518 | 25.0177 | AID485313 |
ras-related protein Rab-9A | Homo sapiens (human) | Potency | 2.8184 | 0.0002 | 2.6215 | 31.4954 | AID485297 |
geminin | Homo sapiens (human) | Potency | 29.0929 | 0.0046 | 11.3741 | 33.4983 | AID624297 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |