You're asking about **1-(4-ethylphenyl)-3-(phenylmethyl)thiourea**. Let's break down its structure and potential importance in research:
**Structure:**
* **Thiourea:** This is the core molecule, containing a sulfur atom double-bonded to a carbon atom, which is also bonded to two nitrogen atoms.
* **1-(4-ethylphenyl):** This part refers to a phenyl ring (a six-membered carbon ring with alternating double bonds) with an ethyl group (CH2CH3) attached at the 4th position (opposite the nitrogen).
* **3-(phenylmethyl):** This part indicates a benzyl group (C6H5CH2-), which is a phenyl ring attached to a CH2 group, linked to the thiourea molecule at the 3rd position.
**Potential Importance in Research:**
Thiourea derivatives are known for their diverse biological activities. Here's why 1-(4-ethylphenyl)-3-(phenylmethyl)thiourea could be important:
* **Antioxidant Properties:** Thioureas can act as antioxidants, neutralizing harmful free radicals. This could be useful in combating oxidative stress related to diseases like cancer, cardiovascular disease, and neurodegenerative disorders.
* **Antimicrobial Activity:** Thioureas have been explored for their potential to inhibit the growth of bacteria, fungi, and viruses. This could be relevant in developing new antimicrobial drugs.
* **Anti-inflammatory Activity:** Thioureas have shown promise in reducing inflammation, which could be beneficial in treating conditions like arthritis and inflammatory bowel disease.
* **Enzyme Inhibition:** Some thioureas can inhibit specific enzymes involved in disease processes. This opens the door for targeted drug development.
* **Other Applications:** Thioureas have also found applications in areas like:
* **Agrochemicals:** As herbicides or pesticides
* **Materials Science:** As components in polymers and coatings
**Important Note:** It's crucial to remember that the specific research interest in 1-(4-ethylphenyl)-3-(phenylmethyl)thiourea is highly dependent on the context. This particular thiourea might have been synthesized and characterized for a specific research project, and its importance would be tied to that project's goals.
**To understand its significance, you would need more information about the research project it was involved in.**
ID Source | ID |
---|---|
PubMed CID | 2093562 |
CHEMBL ID | 1321350 |
CHEBI ID | 105882 |
Synonym |
---|
smr000377257 |
MLS000772586 |
CHEBI:105882 |
AKOS003708269 |
1-benzyl-3-(4-ethylphenyl)thiourea |
HMS2708H13 |
CHEMBL1321350 |
1-(4-ethylphenyl)-3-(phenylmethyl)thiourea |
Q27183670 |
Z45794609 |
DTXSID401333591 |
481010-03-1 |
Class | Description |
---|---|
thioureas | Compounds of general formula RR'NC(=S)NR''R'''. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Luciferase | Photinus pyralis (common eastern firefly) | Potency | 21.3313 | 0.0072 | 15.7588 | 89.3584 | AID588342 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 18.3489 | 0.0041 | 10.8903 | 31.5287 | AID504467 |
DNA polymerase beta | Homo sapiens (human) | Potency | 79.4328 | 0.0224 | 21.0102 | 89.1251 | AID485314 |
ras-related protein Rab-9A | Homo sapiens (human) | Potency | 3.1623 | 0.0002 | 2.6215 | 31.4954 | AID485297 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 89.1251 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 16.9308 | 0.0079 | 8.2332 | 1,122.0200 | AID2546; AID2551 |
survival motor neuron protein isoform d | Homo sapiens (human) | Potency | 11.2202 | 0.1259 | 12.2344 | 35.4813 | AID1458 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |