1-(3-chlorophenyl)-3-(2-phenoxyphenyl)thiourea is a synthetic compound with the following structural formula:
**[Image of the compound's structural formula]**
This compound belongs to a family of molecules called thioureas. Thioureas are organic compounds containing the functional group C(=S)NH2, which is characterized by a sulfur atom double-bonded to a carbon atom and single-bonded to a nitrogen atom.
**Why is 1-(3-chlorophenyl)-3-(2-phenoxyphenyl)thiourea important for research?**
While this specific compound might not be widely studied, thioureas in general are of significant interest in research due to their diverse biological activities. Here are some reasons why:
* **Antimicrobial Activity:** Thioureas have been shown to exhibit antimicrobial activity against various bacteria, fungi, and viruses. They can interfere with the growth and survival of these microorganisms.
* **Anti-inflammatory Properties:** Some thioureas have been found to possess anti-inflammatory properties, potentially making them useful in treating conditions like arthritis.
* **Antioxidant Activity:** Thioureas can act as antioxidants, protecting cells from damage caused by free radicals.
* **Anti-cancer Activity:** Certain thioureas have been explored for their potential anti-cancer activity. They can interact with DNA, inhibit enzyme activity, and induce apoptosis (programmed cell death) in cancer cells.
* **Potential for Drug Development:** The diverse biological activities of thioureas make them attractive candidates for drug development. Researchers are investigating their potential in treating a range of diseases, including infections, inflammation, and cancer.
**Specific to 1-(3-chlorophenyl)-3-(2-phenoxyphenyl)thiourea, its importance likely depends on the specific research context:**
* It could be used as a starting point for the synthesis of other, potentially more potent thiourea derivatives.
* It might be investigated for its own biological activity, especially if it possesses unique structural features compared to other thioureas.
* It could be studied as a model compound to understand the structure-activity relationship of thioureas.
**To fully understand the importance of this specific compound, more information is needed about the research project or study it is involved in.**
ID Source | ID |
---|---|
PubMed CID | 1288168 |
CHEMBL ID | 1451017 |
CHEBI ID | 122158 |
Synonym |
---|
smr000199376 |
n-(3-chlorophenyl)-n'-(2-phenoxyphenyl)thiourea |
MLS000580489 |
STK133805 |
1-(3-chlorophenyl)-3-(2-phenoxyphenyl)thiourea |
CHEBI:122158 |
AKOS003711845 |
HMS2156O04 |
HMS3315M17 |
CHEMBL1451017 |
Q27210803 |
Class | Description |
---|---|
aromatic ether | Any ether in which the oxygen is attached to at least one aryl substituent. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Ferritin light chain | Equus caballus (horse) | Potency | 28.1838 | 5.6234 | 17.2929 | 31.6228 | AID485281 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 14.1254 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
TDP1 protein | Homo sapiens (human) | Potency | 24.8446 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
Microtubule-associated protein tau | Homo sapiens (human) | Potency | 19.9526 | 0.1800 | 13.5574 | 39.8107 | AID1468 |
Smad3 | Homo sapiens (human) | Potency | 35.4813 | 0.0052 | 7.8098 | 29.0929 | AID588855 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 25.1189 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
PINK1 | Homo sapiens (human) | Potency | 50.1187 | 2.8184 | 18.8959 | 44.6684 | AID624263 |
67.9K protein | Vaccinia virus | Potency | 28.1838 | 0.0001 | 8.4406 | 100.0000 | AID720580 |
Parkin | Homo sapiens (human) | Potency | 50.1187 | 0.8199 | 14.8306 | 44.6684 | AID624263 |
IDH1 | Homo sapiens (human) | Potency | 16.3601 | 0.0052 | 10.8652 | 35.4813 | AID686970 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 28.1838 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
polyunsaturated fatty acid lipoxygenase ALOX12 | Homo sapiens (human) | Potency | 22.3872 | 1.0000 | 12.2326 | 31.6228 | AID1452 |
chromobox protein homolog 1 | Homo sapiens (human) | Potency | 4.4668 | 0.0060 | 26.1688 | 89.1251 | AID540317 |
nuclear factor erythroid 2-related factor 2 isoform 2 | Homo sapiens (human) | Potency | 23.1093 | 0.0041 | 9.9848 | 25.9290 | AID504444 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 22.7407 | 0.0079 | 8.2332 | 1,122.0200 | AID2546; AID2551 |
geminin | Homo sapiens (human) | Potency | 20.5962 | 0.0046 | 11.3741 | 33.4983 | AID624296 |
neuropeptide S receptor isoform A | Homo sapiens (human) | Potency | 25.1189 | 0.0158 | 12.3113 | 615.5000 | AID1461 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
G protein-activated inward rectifier potassium channel 2 | Homo sapiens (human) | POTENCY_uM | 8.0911 | 2.2518 | 9.6973 | 30.0000 | AID623909 |
G protein-activated inward rectifier potassium channel 1 | Homo sapiens (human) | POTENCY_uM | 8.0911 | 2.2518 | 9.6973 | 30.0000 | AID623909 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |