## 1-(3-chloro-4-methoxyphenyl)-3-(2-fluorophenyl)urea: Structure and Potential Importance
1-(3-chloro-4-methoxyphenyl)-3-(2-fluorophenyl)urea is a chemical compound with the following structural formula:
**Structure:**
```
Cl
\\
C
/ \\
O OCH3
\\ /
C
/ \\
H NH
\\
C
/ \\
H NH
\\
C
/ \\
H F
/
C
/ \\
H H
```
**Importance in Research:**
While specific information about this compound's research significance is not readily available, its structure suggests potential applications in various fields:
**1. Pharmaceutical Research:**
* **Potential Drug Candidate:** The presence of a urea group and aromatic rings with substituents like chlorine, fluorine, and methoxy groups indicates that this molecule could possess biological activity. It could be a potential lead compound for developing drugs targeting various disease areas.
* **Drug Delivery:** The urea group can act as a hydrogen bond donor, potentially facilitating interaction with biological targets and enhancing drug delivery.
**2. Material Science:**
* **Polymer Synthesis:** The urea group can participate in polymerization reactions, potentially leading to the synthesis of novel polymers with specific properties.
**3. Agricultural Research:**
* **Herbicide or Pesticide:** The aromatic rings and substituents might give this compound herbicidal or pesticidal activity, depending on the specific structure and modifications.
**4. Chemical Biology Research:**
* **Probing Protein Interactions:** The compound could act as a tool to probe protein-protein interactions due to its potential to form hydrogen bonds and interact with specific amino acid residues.
**5. Environmental Research:**
* **Bioremediation:** The structure might influence the molecule's ability to degrade pollutants in the environment, potentially contributing to bioremediation strategies.
**Note:** This information is based on general knowledge about the chemical structure and potential applications of compounds with similar characteristics. Further research is required to determine the specific properties and importance of 1-(3-chloro-4-methoxyphenyl)-3-(2-fluorophenyl)urea in different scientific fields.
It is essential to consult relevant scientific literature and databases to gain a comprehensive understanding of its potential applications.
ID Source | ID |
---|---|
PubMed CID | 4460240 |
CHEMBL ID | 1518603 |
CHEBI ID | 105637 |
Synonym |
---|
HMS2623E16 |
n-(3-chloro-4-methoxyphenyl)-n'-(2-fluorophenyl)urea |
smr000297513 |
MLS000679238 |
STK476143 |
1-(3-chloro-4-methoxyphenyl)-3-(2-fluorophenyl)urea |
CHEBI:105637 |
AKOS003316248 |
CHEMBL1518603 |
Q27183393 |
Class | Description |
---|---|
ureas | |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Luciferase | Photinus pyralis (common eastern firefly) | Potency | 2.1331 | 0.0072 | 15.7588 | 89.3584 | AID588342 |
thioredoxin reductase | Rattus norvegicus (Norway rat) | Potency | 89.1251 | 0.1000 | 20.8793 | 79.4328 | AID588453 |
BRCA1 | Homo sapiens (human) | Potency | 1.7783 | 0.8913 | 7.7225 | 25.1189 | AID624202 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 4.6396 | 0.0041 | 10.8903 | 31.5287 | AID504466; AID504467 |
NPC intracellular cholesterol transporter 1 precursor | Homo sapiens (human) | Potency | 1.7783 | 0.0126 | 2.4518 | 25.0177 | AID485313 |
nuclear factor erythroid 2-related factor 2 isoform 2 | Homo sapiens (human) | Potency | 1.8356 | 0.0041 | 9.9848 | 25.9290 | AID504444 |
ras-related protein Rab-9A | Homo sapiens (human) | Potency | 1.4125 | 0.0002 | 2.6215 | 31.4954 | AID485297 |
survival motor neuron protein isoform d | Homo sapiens (human) | Potency | 10.0000 | 0.1259 | 12.2344 | 35.4813 | AID1458 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |