1-(3,5-dimethoxyphenyl)-3-(3-pyridinyl)thiourea is a **chemical compound**, specifically a **thiourea derivative**.
**Structure and Properties:**
* It consists of a thiourea core with a 3,5-dimethoxyphenyl group attached to one nitrogen and a 3-pyridinyl group attached to the other nitrogen.
* The presence of the dimethoxyphenyl and pyridinyl groups adds to the compound's complexity and potentially its biological activity.
**Importance for Research:**
While the exact applications of this specific compound might not be widely known, its structure suggests potential for research in various fields:
* **Pharmacology and Medicinal Chemistry:**
* Thioureas are known for their diverse biological activities, including anti-inflammatory, anti-microbial, and anti-cancer effects.
* The specific substituents on this thiourea (dimethoxyphenyl and pyridinyl) could influence its activity against specific targets, making it a candidate for drug development.
* **Materials Science:**
* Thioureas can exhibit interesting properties like non-linear optical behavior, making them relevant for developing new materials.
* The aromatic groups on this thiourea might contribute to its optical and electronic properties.
* **Organic Synthesis:**
* This compound could serve as a building block or intermediate in the synthesis of more complex molecules with potential applications in various fields.
**Important Note:** It is crucial to remember that the potential applications and significance of this compound depend on its specific properties and activities, which would require further research and investigation.
**To find more information about this specific compound, you could:**
* Search online databases like PubChem, ChemSpider, and Reaxys.
* Look for research articles related to thioureas or the specific substituents present in the compound.
* Contact researchers working in the field of medicinal chemistry, materials science, or organic synthesis.
Remember, accessing reliable scientific databases and literature is essential for understanding the properties and potential applications of any chemical compound.
ID Source | ID |
---|---|
PubMed CID | 1974506 |
CHEMBL ID | 1372853 |
CHEBI ID | 111180 |
Synonym |
---|
OPREA1_682535 |
n-(3,5-dimethoxyphenyl)-n'-3-pyridinylthiourea |
MLS000581633 , |
smr000200266 |
STK164826 |
1-(3,5-dimethoxyphenyl)-3-pyridin-3-ylthiourea |
CHEBI:111180 |
VU0414979-1 |
AKOS002321371 |
HMS2549F15 |
1-(3,5-dimethoxyphenyl)-3-(3-pyridyl)thiourea |
1-(3,5-dimethoxyphenyl)-3-pyridin-3-yl-thiourea |
cid_1974506 |
1-(3,5-dimethoxyphenyl)-3-(3-pyridinyl)thiourea |
bdbm34734 |
CHEMBL1372853 |
Q27190699 |
SR-01000281039-1 |
sr-01000281039 |
n-(3,5-dimethoxyphenyl)-n'-(3-pyridyl)thiourea |
Class | Description |
---|---|
thioureas | Compounds of general formula RR'NC(=S)NR''R'''. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
phosphopantetheinyl transferase | Bacillus subtilis | Potency | 22.3872 | 0.1413 | 37.9142 | 100.0000 | AID1490 |
TDP1 protein | Homo sapiens (human) | Potency | 16.3601 | 0.0008 | 11.3822 | 44.6684 | AID686978 |
thioredoxin glutathione reductase | Schistosoma mansoni | Potency | 44.6684 | 0.1000 | 22.9075 | 100.0000 | AID485364 |
apical membrane antigen 1, AMA1 | Plasmodium falciparum 3D7 | Potency | 39.8107 | 0.7079 | 12.1943 | 39.8107 | AID720542 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 31.6228 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 15.8489 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1 | Homo sapiens (human) | Potency | 28.1838 | 0.0018 | 15.6638 | 39.8107 | AID894 |
serine/threonine-protein kinase PLK1 | Homo sapiens (human) | Potency | 23.7781 | 0.1683 | 16.4040 | 67.0158 | AID720504 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 22.7407 | 0.0079 | 8.2332 | 1,122.0200 | AID2546; AID2551 |
geminin | Homo sapiens (human) | Potency | 29.0929 | 0.0046 | 11.3741 | 33.4983 | AID624297 |
histone acetyltransferase KAT2A isoform 1 | Homo sapiens (human) | Potency | 28.1838 | 0.2512 | 15.8432 | 39.8107 | AID504327 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 1.7783 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
MPI protein | Homo sapiens (human) | IC50 (µMol) | 50.0000 | 0.1900 | 13.8256 | 50.1000 | AID1220 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
negative regulation of inflammatory response to antigenic stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
renal water homeostasis | Guanine nucleotide-binding protein G | Homo sapiens (human) |
G protein-coupled receptor signaling pathway | Guanine nucleotide-binding protein G | Homo sapiens (human) |
regulation of insulin secretion | Guanine nucleotide-binding protein G | Homo sapiens (human) |
cellular response to glucagon stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |