Page last updated: 2024-12-09

1-(3,4-dimethoxy-2-methylphenyl)-2-(3,4-dimethoxyphenyl)ethanone

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

You are describing a compound with a very specific chemical structure. Here's a breakdown:

* **1-(3,4-dimethoxy-2-methylphenyl)-2-(3,4-dimethoxyphenyl)ethanone** is a **complex organic molecule**. The name tells us a lot about its structure:
* **Ethane**: The root name ethanone indicates a ketone functional group (C=O) attached to a two-carbon chain (ethane).
* **3,4-dimethoxy**: This indicates the presence of two methoxy (CH3O-) groups attached to the benzene ring at the 3 and 4 positions.
* **2-methylphenyl**: This signifies a methyl group (CH3) at the 2 position on a benzene ring.

**Visualizing the Structure:**

The molecule has a central ketone group flanked by two substituted benzene rings. One benzene ring has two methoxy groups and a methyl group, while the other has two methoxy groups.

**Why is it important for research?**

You haven't given any context for this molecule. To determine its significance, I need more information about the research you are interested in. However, some possibilities include:

* **Pharmacology and Medicine:** This type of molecule could be a potential drug candidate or a starting point for drug synthesis.
* **Materials Science:** It might have interesting optical or electronic properties, making it relevant to the development of new materials.
* **Synthetic Chemistry:** The compound could be a useful intermediate for the synthesis of other complex molecules.

**To understand its true importance, you need to provide:**

* **The specific research area you're interested in.** (e.g., drug discovery, materials science, synthetic chemistry)
* **Any additional information about the research.** (e.g., its potential activity, its use as a building block)

With more details, I can provide a more insightful explanation of its significance.

Cross-References

ID SourceID
PubMed CID825969
CHEMBL ID1504659
CHEBI ID121189

Synonyms (9)

Synonym
AE-562/12222515
1-(3,4-dimethoxy-2-methylphenyl)-2-(3,4-dimethoxyphenyl)ethanone
smr000224793
MLS000698379
OPREA1_789310
CHEBI:121189
HMS2510F05
CHEMBL1504659
Q27209659
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
stilbenoidAny olefinic compound characterised by a 1,2-diphenylethylene backbone.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (11)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
glp-1 receptor, partialHomo sapiens (human)Potency11.22020.01846.806014.1254AID624417
TDP1 proteinHomo sapiens (human)Potency19.73470.000811.382244.6684AID686978; AID686979
Smad3Homo sapiens (human)Potency4.46680.00527.809829.0929AID588855
IDH1Homo sapiens (human)Potency29.09290.005210.865235.4813AID686970
nuclear factor erythroid 2-related factor 2 isoform 2Homo sapiens (human)Potency29.09290.00419.984825.9290AID504444
mitogen-activated protein kinase 1Homo sapiens (human)Potency0.35480.039816.784239.8107AID1454
nuclear receptor ROR-gamma isoform 1Mus musculus (house mouse)Potency18.86770.00798.23321,122.0200AID2546; AID2551
gemininHomo sapiens (human)Potency0.32640.004611.374133.4983AID624297
survival motor neuron protein isoform dHomo sapiens (human)Potency7.94330.125912.234435.4813AID1458
lamin isoform A-delta10Homo sapiens (human)Potency7.07950.891312.067628.1838AID1487
Guanine nucleotide-binding protein GHomo sapiens (human)Potency50.11871.995325.532750.1187AID624287
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (5)

Processvia Protein(s)Taxonomy
negative regulation of inflammatory response to antigenic stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
renal water homeostasisGuanine nucleotide-binding protein GHomo sapiens (human)
G protein-coupled receptor signaling pathwayGuanine nucleotide-binding protein GHomo sapiens (human)
regulation of insulin secretionGuanine nucleotide-binding protein GHomo sapiens (human)
cellular response to glucagon stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (2)

Processvia Protein(s)Taxonomy
G protein activityGuanine nucleotide-binding protein GHomo sapiens (human)
adenylate cyclase activator activityGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (1)

Processvia Protein(s)Taxonomy
plasma membraneGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (13)

Assay IDTitleYearJournalArticle
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (5)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's3 (60.00)24.3611
2020's1 (20.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.56

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.56 (24.57)
Research Supply Index1.79 (2.92)
Research Growth Index4.36 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.56)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other5 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]