You are describing a chemical compound with the rather long name **1-(2-methyl-6-propan-2-ylphenyl)-5-phenyltetrazole**.
**Here's a breakdown of its structure and importance:**
* **Structure:**
* **Tetrazole ring:** The core of the molecule is a tetrazole ring. This is a five-membered ring containing four nitrogen atoms and one carbon atom.
* **Substituents:**
* At position 1, there is a phenyl group substituted with:
* a methyl group at position 2.
* an isopropyl group (propan-2-yl) at position 6.
* At position 5, there is another phenyl group.
* **Importance:** This compound is likely a derivative of **tetrazole**, which is a building block for various heterocyclic compounds with diverse applications, such as:
* **Pharmaceuticals:** Tetrazole derivatives have shown promising activity against various diseases, including cancer, inflammation, and infections.
* **Materials Science:** They can be used as components in polymers, explosives, and other materials.
* **Organic Chemistry:** They serve as versatile intermediates in the synthesis of complex molecules.
**Why is it important for research?**
1. **Novel Drug Discovery:** Researchers are continually exploring new tetrazole derivatives to identify promising drug candidates with improved efficacy, selectivity, and safety profiles. This compound might have potential biological activity that warrants further investigation.
2. **Mechanism of Action Studies:** Understanding how this specific tetrazole derivative interacts with biological targets (proteins, enzymes, etc.) can provide valuable insights into the development of new drugs.
3. **Synthetic Methodology:** The synthesis of this compound might involve novel or improved synthetic techniques that could be applied to other tetrazole derivatives.
**To understand its specific importance, you would need more context:**
* **What is the research question or goal?**
* **What are the intended applications of this compound?**
* **What are the observed properties or biological activities of this specific derivative?**
By providing more information, we can better understand the significance of this particular tetrazole derivative in the context of research.
ID Source | ID |
---|---|
PubMed CID | 872287 |
CHEMBL ID | 1595437 |
CHEBI ID | 116739 |
Synonym |
---|
CBMICRO_025450 |
BIM-0025364.P001 |
MLS000107303 |
smr000111674 |
CHEBI:116739 |
1-(2-methyl-6-propan-2-ylphenyl)-5-phenyltetrazole |
HMS2500B07 |
CCG-12328 |
CHEMBL1595437 |
Q27202161 |
sr-01000514708 |
SR-01000514708-1 |
Class | Description |
---|---|
tetrazoles | An azole in which the five-membered heterocyclic aromatic skeleton contains four N atoms and one C atom. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Putative fructose-1,6-bisphosphate aldolase | Giardia intestinalis | Potency | 15.8114 | 0.1409 | 11.1940 | 39.8107 | AID2451 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 11.2202 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
15-lipoxygenase, partial | Homo sapiens (human) | Potency | 1.0000 | 0.0126 | 10.6917 | 88.5700 | AID887 |
USP1 protein, partial | Homo sapiens (human) | Potency | 44.6684 | 0.0316 | 37.5844 | 354.8130 | AID743255 |
TDP1 protein | Homo sapiens (human) | Potency | 29.0929 | 0.0008 | 11.3822 | 44.6684 | AID686978 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 35.4813 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
thyroid stimulating hormone receptor | Homo sapiens (human) | Potency | 19.9526 | 0.0013 | 18.0743 | 39.8107 | AID926; AID938 |
nonstructural protein 1 | Influenza A virus (A/WSN/1933(H1N1)) | Potency | 10.0000 | 0.2818 | 9.7212 | 35.4813 | AID2326 |
chromobox protein homolog 1 | Homo sapiens (human) | Potency | 63.0957 | 0.0060 | 26.1688 | 89.1251 | AID540317 |
lethal factor (plasmid) | Bacillus anthracis str. A2012 | Potency | 5.0119 | 0.0200 | 10.7869 | 31.6228 | AID912 |
Glycoprotein hormones alpha chain | Homo sapiens (human) | Potency | 11.2202 | 4.4668 | 8.3448 | 10.0000 | AID624291 |
Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) | Potency | 31.6228 | 3.9811 | 46.7448 | 112.2020 | AID720708 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
hormone activity | Glycoprotein hormones alpha chain | Homo sapiens (human) |
protein binding | Glycoprotein hormones alpha chain | Homo sapiens (human) |
follicle-stimulating hormone activity | Glycoprotein hormones alpha chain | Homo sapiens (human) |
guanyl-nucleotide exchange factor activity | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
protein binding | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
cAMP binding | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
protein-macromolecule adaptor activity | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
small GTPase binding | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
extracellular region | Glycoprotein hormones alpha chain | Homo sapiens (human) |
extracellular space | Glycoprotein hormones alpha chain | Homo sapiens (human) |
Golgi lumen | Glycoprotein hormones alpha chain | Homo sapiens (human) |
follicle-stimulating hormone complex | Glycoprotein hormones alpha chain | Homo sapiens (human) |
pituitary gonadotropin complex | Glycoprotein hormones alpha chain | Homo sapiens (human) |
extracellular space | Glycoprotein hormones alpha chain | Homo sapiens (human) |
cytosol | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
plasma membrane | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
membrane | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
hippocampal mossy fiber to CA3 synapse | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
plasma membrane | Rap guanine nucleotide exchange factor 4 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |