1-(2,3-dihydroindol-1-yl)-2-(5-pyridin-4-yl-2-tetrazolyl)ethanone is a complex organic compound with a specific structure involving a dihydroindole ring, a pyridinyl group, and a tetrazole ring. Its significance lies in its potential for research in various fields, primarily in medicinal chemistry and pharmaceutical development.
**Here's why it's important:**
* **Potential Drug Target:** This compound exhibits a specific molecular structure that could interact with specific biological targets within the body. This makes it a potential candidate for drug development, particularly in the areas of:
* **Anti-inflammatory agents:** The dihydroindole moiety is known to possess anti-inflammatory properties, making this compound potentially useful for treating inflammatory conditions.
* **Neurological disorders:** The pyridinyl group and tetrazole ring are associated with compounds targeting the nervous system. This suggests potential applications in treating neurological disorders like epilepsy or Parkinson's disease.
* **Anti-cancer drugs:** Tetrazole derivatives have shown promise as anti-cancer agents, potentially making this compound a valuable lead for developing new cancer treatments.
* **Structure-Activity Relationship Studies:** Researchers use this compound and similar derivatives to study the relationship between molecular structure and biological activity. This helps them understand how different parts of the molecule contribute to its interaction with biological targets, enabling the design of even more potent and specific drugs.
* **Lead Optimization:** This compound could serve as a lead compound for further optimization. Scientists can modify its structure by adding or removing functional groups to improve its pharmacological properties, such as bioavailability, potency, and selectivity.
**However, it's crucial to note:**
* **Limited Public Information:** There is currently limited publicly available information on the exact biological activity and pharmacological properties of this specific compound. It's likely that ongoing research is being conducted in specific laboratories or institutions.
* **Preclinical Development:** This compound is likely still in the early stages of research and development. Extensive preclinical studies are necessary to assess its safety, efficacy, and pharmacokinetic profile before it can be considered for clinical trials in humans.
**In conclusion, 1-(2,3-dihydroindol-1-yl)-2-(5-pyridin-4-yl-2-tetrazolyl)ethanone possesses a promising molecular structure and holds potential for research in drug discovery and development. Further investigation is needed to unlock its full potential and determine its true value in the fight against various diseases.**
ID Source | ID |
---|---|
PubMed CID | 645070 |
CHEMBL ID | 1302002 |
CHEBI ID | 120852 |
Synonym |
---|
OPREA1_590779 |
1-(2,3-dihydro-indol-1-yl)-2-(5-pyridin-4-yl-tetrazol-2-yl)-ethanone |
MLS000073457 , |
smr000003446 |
OPREA1_330901 |
CHEBI:120852 |
1-(2,3-dihydroindol-1-yl)-2-(5-pyridin-4-yltetrazol-2-yl)ethanone |
HMS2474G09 |
CHEMBL1302002 |
bdbm37869 |
1-(2,3-dihydroindol-1-yl)-2-(5-pyridin-4-yl-1,2,3,4-tetrazol-2-yl)ethanone |
1-(2,3-dihydroindol-1-yl)-2-(5-pyridin-4-yl-2-tetrazolyl)ethanone |
cid_645070 |
1-indolin-1-yl-2-[5-(4-pyridyl)tetrazol-2-yl]ethanone |
Q27208997 |
Class | Description |
---|---|
indoles | Any compound containing an indole skeleton. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 56.2341 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 50.1187 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
negative regulation of inflammatory response to antigenic stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
renal water homeostasis | Guanine nucleotide-binding protein G | Homo sapiens (human) |
G protein-coupled receptor signaling pathway | Guanine nucleotide-binding protein G | Homo sapiens (human) |
regulation of insulin secretion | Guanine nucleotide-binding protein G | Homo sapiens (human) |
cellular response to glucagon stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |