You're asking about a specific chemical compound, **1-(1,3-benzodioxol-5-yl)-3-(5-tert-butyl-2-methoxyphenyl)urea**. This compound is likely a synthetic molecule, and its exact importance for research depends on the context.
Here's why it might be relevant:
* **Potential Pharmaceutical Activity:** The structural features of the compound suggest it might possess interesting biological activity.
* **Benzodioxole Ring:** This ring system is commonly found in compounds with pharmacological activity, often related to anti-inflammatory, antifungal, or antidepressant effects.
* **Aromatic Rings:** Both the benzodioxole and the phenyl ring are aromatic, which can influence drug-receptor interactions.
* **Substituents:** The tert-butyl group and the methoxy group could significantly impact the compound's properties, like lipophilicity and binding affinity.
* **Chemical Research:** The compound could be a valuable tool for:
* **Structure-Activity Relationship (SAR) studies:** Researchers might be interested in understanding how different functional groups on the molecule affect its activity.
* **Synthesis Development:** The synthesis of this compound might be challenging, and developing efficient methods for its production could be of interest.
* **Biological Activity:** This compound might be studied for potential:
* **Antimicrobial activity:** Its structure suggests it might be active against bacteria or fungi.
* **Antioxidant activity:** The presence of phenolic rings could give it antioxidant properties.
* **Other biological effects:** Researchers could explore other potential targets for this compound, such as enzymes or receptors.
**To understand its actual importance for research, we need more context. For example:**
* **What is the research area?** Is it focused on drug discovery, materials science, or something else?
* **What are the goals of the research?** Is it trying to develop a new drug, understand a specific biological process, or synthesize a new type of material?
Without this information, it's difficult to say definitively why this specific compound is important.
ID Source | ID |
---|---|
PubMed CID | 2954106 |
CHEMBL ID | 1392793 |
CHEBI ID | 108361 |
Synonym |
---|
MLS000050489 , |
n-1,3-benzodioxol-5-yl-n'-(5-tert-butyl-2-methoxyphenyl)urea |
smr000076409 |
STK458679 |
1-(1,3-benzodioxol-5-yl)-3-(5-tert-butyl-2-methoxyphenyl)urea |
CHEBI:108361 |
AKOS003352424 |
HMS2383B19 |
1-(1,3-benzodioxol-5-yl)-3-(5-tert-butyl-2-methoxy-phenyl)urea |
cid_2954106 |
bdbm37436 |
CHEMBL1392793 |
Q27187132 |
SR-01000275015-1 |
sr-01000275015 |
n-(1,3-benzodioxol-5-yl)-n'-[5-(tert-butyl)-2-methoxyphenyl]urea |
Class | Description |
---|---|
ureas | |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, MAJOR APURINIC/APYRIMIDINIC ENDONUCLEASE | Homo sapiens (human) | Potency | 28.1838 | 0.0032 | 45.4673 | 12,589.2998 | AID2517 |
Chain A, JmjC domain-containing histone demethylation protein 3A | Homo sapiens (human) | Potency | 25.1189 | 0.6310 | 35.7641 | 100.0000 | AID504339 |
Chain A, ATP-DEPENDENT DNA HELICASE Q1 | Homo sapiens (human) | Potency | 39.8107 | 0.1259 | 19.1169 | 125.8920 | AID2549 |
Luciferase | Photinus pyralis (common eastern firefly) | Potency | 26.8545 | 0.0072 | 15.7588 | 89.3584 | AID588342 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 5.6234 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 20.5962 | 0.0041 | 10.8903 | 31.5287 | AID504467 |
TDP1 protein | Homo sapiens (human) | Potency | 22.7265 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
Microtubule-associated protein tau | Homo sapiens (human) | Potency | 19.5147 | 0.1800 | 13.5574 | 39.8107 | AID1460; AID1468 |
Smad3 | Homo sapiens (human) | Potency | 35.4813 | 0.0052 | 7.8098 | 29.0929 | AID588855 |
nonstructural protein 1 | Influenza A virus (A/WSN/1933(H1N1)) | Potency | 12.5893 | 0.2818 | 9.7212 | 35.4813 | AID2326 |
bromodomain adjacent to zinc finger domain 2B | Homo sapiens (human) | Potency | 31.6228 | 0.7079 | 36.9043 | 89.1251 | AID504333 |
P53 | Homo sapiens (human) | Potency | 50.1187 | 0.0731 | 9.6858 | 31.6228 | AID504706 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 39.8107 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
nuclear factor erythroid 2-related factor 2 isoform 2 | Homo sapiens (human) | Potency | 23.1093 | 0.0041 | 9.9848 | 25.9290 | AID504444 |
huntingtin isoform 2 | Homo sapiens (human) | Potency | 17.7828 | 0.0006 | 18.4198 | 1,122.0200 | AID1688 |
peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 | Homo sapiens (human) | Potency | 67.4555 | 0.4256 | 12.0591 | 28.1838 | AID504891 |
geminin | Homo sapiens (human) | Potency | 14.9564 | 0.0046 | 11.3741 | 33.4983 | AID624296; AID624297 |
lethal factor (plasmid) | Bacillus anthracis str. A2012 | Potency | 10.0000 | 0.0200 | 10.7869 | 31.6228 | AID912 |
lamin isoform A-delta10 | Homo sapiens (human) | Potency | 35.4813 | 0.8913 | 12.0676 | 28.1838 | AID1487 |
Rap guanine nucleotide exchange factor 3 | Homo sapiens (human) | Potency | 112.2020 | 6.3096 | 60.2008 | 112.2020 | AID720707 |
TAR DNA-binding protein 43 | Homo sapiens (human) | Potency | 10.0000 | 1.7783 | 16.2081 | 35.4813 | AID652104 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
heat shock protein HSP 90-alpha isoform 2 | Homo sapiens (human) | AC50 | 7.9080 | 0.1950 | 3.6679 | 18.6960 | AID540270 |
heat shock protein 90, putative | Plasmodium falciparum 3D7 | AC50 | 8.9630 | 0.1950 | 4.9920 | 98.5000 | AID540268 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |