Page last updated: 2024-12-09

(5-methoxy-3-benzofuranyl)-phenylmethanone

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

(5-methoxy-3-benzofuranyl)-phenylmethanone, also known as **5-methoxy-3-benzofuran-1-yl phenyl ketone**, is a chemical compound with the molecular formula C15H12O3.

**Structure and Properties:**

* It is a white to off-white solid with a melting point around 110-112 °C.
* The molecule consists of a benzofuran ring system with a methoxy group at position 5 and a phenyl ketone substituent at position 3.

**Importance in Research:**

(5-methoxy-3-benzofuranyl)-phenylmethanone has gained attention in research for its potential pharmacological activities. Here's why it's significant:

1. **Anti-Inflammatory Potential:** Studies have shown that this compound possesses anti-inflammatory properties. It has been investigated for its ability to inhibit the production of pro-inflammatory cytokines, such as TNF-alpha, which are involved in inflammatory processes.

2. **Anti-Cancer Activity:** Some research suggests that (5-methoxy-3-benzofuranyl)-phenylmethanone might exhibit anti-cancer activity. It has been reported to inhibit the growth of certain cancer cell lines in vitro. The mechanisms underlying its anti-cancer potential are still being explored.

3. **Antioxidant Properties:** The presence of the methoxy group in the benzofuran ring system suggests that this compound might possess antioxidant properties. Antioxidants play a crucial role in protecting cells from oxidative damage caused by free radicals.

4. **Pharmacological Lead:** (5-methoxy-3-benzofuranyl)-phenylmethanone serves as a valuable lead compound for the development of new drugs with anti-inflammatory, anti-cancer, or antioxidant activities. By modifying its structure, researchers can potentially enhance its potency and selectivity.

**Further Research and Development:**

While the research on (5-methoxy-3-benzofuranyl)-phenylmethanone is promising, more studies are needed to fully understand its mechanism of action, pharmacological properties, and potential therapeutic applications. Further investigations are essential to assess its safety and efficacy for use in human medicine.

Cross-References

ID SourceID
PubMed CID619852
CHEMBL ID1430260
CHEBI ID109154
SCHEMBL ID16541098

Synonyms (30)

Synonym
CBMICRO_008627
(5-methoxy-1-benzofuran-3-yl)(phenyl)methanone
MLS000683296 ,
smr000267642
OPREA1_108879
BIM-0008496.P001
CHEBI:109154
(5-methoxy-1-benzofuran-3-yl)-phenylmethanone
AKOS001718939
STK751827
HMS2718L22
smsf0009573
CB11266
CHEMBL1430260
(5-methoxy-1-benzofuran-3-yl)(phenyl)methanone #
WBIYZPQWXHJJEE-UHFFFAOYSA-N
methanone, (5-methoxy-3-benzoburyl)phenyl-
cid_619852
bdbm69141
(5-methoxy-3-benzofuranyl)-phenylmethanone
(5-methoxybenzofuran-3-yl)-phenyl-methanone
(5-methoxy-1-benzofuran-3-yl)-phenyl-methanone
Q27188222
sr-01000511783
SR-01000511783-1
SCHEMBL16541098
3-benzoyl-5-methoxybenzofuran
19303-49-2
(5-methoxy-3-benzofuranyl)phenylmethanone
DTXSID101272075
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
aromatic ketoneA ketone in which the carbonyl group is attached to an aromatic ring.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (18)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, JmjC domain-containing histone demethylation protein 3AHomo sapiens (human)Potency70.79460.631035.7641100.0000AID504339
Chain A, Ferritin light chainEquus caballus (horse)Potency25.11895.623417.292931.6228AID485281
LuciferasePhotinus pyralis (common eastern firefly)Potency13.45910.007215.758889.3584AID588342
BRCA1Homo sapiens (human)Potency12.58930.89137.722525.1189AID624202
phosphopantetheinyl transferaseBacillus subtilisPotency89.12510.141337.9142100.0000AID1490
ATAD5 protein, partialHomo sapiens (human)Potency16.08260.004110.890331.5287AID504466; AID504467
bromodomain adjacent to zinc finger domain 2BHomo sapiens (human)Potency89.12510.707936.904389.1251AID504333
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency35.48130.035520.977089.1251AID504332
chromobox protein homolog 1Homo sapiens (human)Potency79.43280.006026.168889.1251AID540317
nuclear factor erythroid 2-related factor 2 isoform 2Homo sapiens (human)Potency29.09290.00419.984825.9290AID504444
importin subunit beta-1 isoform 1Homo sapiens (human)Potency100.00005.804836.130665.1308AID540263
ras-related protein Rab-9AHomo sapiens (human)Potency5.62340.00022.621531.4954AID485297
snurportin-1Homo sapiens (human)Potency100.00005.804836.130665.1308AID540263
histone-lysine N-methyltransferase 2A isoform 2 precursorHomo sapiens (human)Potency10.00000.010323.856763.0957AID2662
lethal(3)malignant brain tumor-like protein 1 isoform IHomo sapiens (human)Potency22.38720.075215.225339.8107AID485360
survival motor neuron protein isoform dHomo sapiens (human)Potency17.78280.125912.234435.4813AID1458
TAR DNA-binding protein 43Homo sapiens (human)Potency14.12541.778316.208135.4813AID652104
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
glycogen synthase kinase-3 beta isoform 1Homo sapiens (human)EC50 (µMol)22.87000.212522.156283.9400AID434954
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (18)

Processvia Protein(s)Taxonomy
negative regulation of protein phosphorylationTAR DNA-binding protein 43Homo sapiens (human)
mRNA processingTAR DNA-binding protein 43Homo sapiens (human)
RNA splicingTAR DNA-binding protein 43Homo sapiens (human)
negative regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
regulation of protein stabilityTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of insulin secretionTAR DNA-binding protein 43Homo sapiens (human)
response to endoplasmic reticulum stressTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of protein import into nucleusTAR DNA-binding protein 43Homo sapiens (human)
regulation of circadian rhythmTAR DNA-binding protein 43Homo sapiens (human)
regulation of apoptotic processTAR DNA-binding protein 43Homo sapiens (human)
negative regulation by host of viral transcriptionTAR DNA-binding protein 43Homo sapiens (human)
rhythmic processTAR DNA-binding protein 43Homo sapiens (human)
regulation of cell cycleTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA destabilizationTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA stabilizationTAR DNA-binding protein 43Homo sapiens (human)
nuclear inner membrane organizationTAR DNA-binding protein 43Homo sapiens (human)
amyloid fibril formationTAR DNA-binding protein 43Homo sapiens (human)
regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (10)

Processvia Protein(s)Taxonomy
RNA polymerase II cis-regulatory region sequence-specific DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
double-stranded DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
RNA bindingTAR DNA-binding protein 43Homo sapiens (human)
mRNA 3'-UTR bindingTAR DNA-binding protein 43Homo sapiens (human)
protein bindingTAR DNA-binding protein 43Homo sapiens (human)
lipid bindingTAR DNA-binding protein 43Homo sapiens (human)
identical protein bindingTAR DNA-binding protein 43Homo sapiens (human)
pre-mRNA intronic bindingTAR DNA-binding protein 43Homo sapiens (human)
molecular condensate scaffold activityTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (9)

Processvia Protein(s)Taxonomy
intracellular non-membrane-bounded organelleTAR DNA-binding protein 43Homo sapiens (human)
nucleusTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
perichromatin fibrilsTAR DNA-binding protein 43Homo sapiens (human)
mitochondrionTAR DNA-binding protein 43Homo sapiens (human)
cytoplasmic stress granuleTAR DNA-binding protein 43Homo sapiens (human)
nuclear speckTAR DNA-binding protein 43Homo sapiens (human)
interchromatin granuleTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
chromatinTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (13)

Assay IDTitleYearJournalArticle
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (5)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's3 (60.00)24.3611
2020's1 (20.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.56

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.56 (24.57)
Research Supply Index1.79 (2.92)
Research Growth Index4.36 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.56)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other5 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]