Page last updated: 2024-12-10

(5,7-dibromo-2-benzofuranyl)-(3,5-dimethyl-1-piperidinyl)methanone

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

You are asking about a compound called **(5,7-dibromo-2-benzofuranyl)-(3,5-dimethyl-1-piperidinyl)methanone**. This is a rather complex chemical name, let's break it down:

* **(5,7-dibromo-2-benzofuranyl)**: This part describes the first component of the molecule.
* **Benzofuran:** It's a cyclic molecule containing a benzene ring fused to a furan ring.
* **2-benzofuranyl:** This indicates that the connection to the rest of the molecule is at the second position of the benzofuran ring.
* **5,7-dibromo:** This tells us that there are two bromine atoms attached at the 5th and 7th positions of the benzofuran ring.
* **-(3,5-dimethyl-1-piperidinyl)methanone:** This is the second part of the molecule.
* **Piperidinyl:** This is a six-membered ring with a nitrogen atom, called a piperidine ring.
* **3,5-dimethyl:** This means there are two methyl (CH3) groups attached at the 3rd and 5th positions of the piperidine ring.
* **1-piperidinyl:** The nitrogen in the piperidine ring is connected to the rest of the molecule.
* **Methanone:** This is a ketone group (C=O) attached to the piperidine ring.

**Putting it all together, the compound is:** A ketone molecule where a benzofuran ring with bromine substituents is connected to a piperidine ring with two methyl groups.

**Why is it important for research?**

It's impossible to know for sure why this specific compound is important for research without further context. However, based on its chemical structure, here are some potential reasons:

* **Pharmacological properties:** The combination of a benzofuran ring (known for its potential in medicinal chemistry) with a piperidine ring (often found in pharmaceuticals) makes it a promising candidate for drug development. It could be active against a variety of biological targets, such as enzymes or receptors.
* **Synthetic building block:** This compound could be a useful intermediate in the synthesis of other, more complex molecules with potential therapeutic applications.
* **Material science:** The presence of bromine atoms might make it useful for applications in material science, such as polymer synthesis or surface modification.

**To understand the specific research importance, you'd need more information about the context. For example:**

* **What is the research area?** (e.g., medicinal chemistry, organic synthesis, material science).
* **What is the goal of the research?** (e.g., finding new drug candidates, developing new synthetic methods, creating new materials).

With more information, we can better understand why this specific compound is being studied.

Cross-References

ID SourceID
PubMed CID4061451
CHEMBL ID1393724
CHEBI ID114673

Synonyms (11)

Synonym
OPREA1_822897
smr000347609
MLS001003752
CHEBI:114673
(5,7-dibromo-1-benzofuran-2-yl)-(3,5-dimethylpiperidin-1-yl)methanone
HMS2693E16
CHEMBL1393724
(5,7-dibromo-2-benzofuranyl)-(3,5-dimethyl-1-piperidinyl)methanone
Q27196077
Z56782245
AKOS034453987
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
benzofurans
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (17)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, Ferritin light chainEquus caballus (horse)Potency31.62285.623417.292931.6228AID485281
LuciferasePhotinus pyralis (common eastern firefly)Potency16.94410.007215.758889.3584AID588342
glp-1 receptor, partialHomo sapiens (human)Potency21.15460.01846.806014.1254AID624172; AID624417
BRCA1Homo sapiens (human)Potency11.22020.89137.722525.1189AID624202
ATAD5 protein, partialHomo sapiens (human)Potency13.33590.004110.890331.5287AID504466; AID504467
TDP1 proteinHomo sapiens (human)Potency23.10930.000811.382244.6684AID686978
Microtubule-associated protein tauHomo sapiens (human)Potency39.81070.180013.557439.8107AID1460
aldehyde dehydrogenase 1 family, member A1Homo sapiens (human)Potency31.62280.011212.4002100.0000AID1030
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency50.11870.035520.977089.1251AID504332
chromobox protein homolog 1Homo sapiens (human)Potency56.23410.006026.168889.1251AID540317
parathyroid hormone/parathyroid hormone-related peptide receptor precursorHomo sapiens (human)Potency10.00003.548119.542744.6684AID743266
huntingtin isoform 2Homo sapiens (human)Potency35.48130.000618.41981,122.0200AID1688
DNA polymerase iota isoform a (long)Homo sapiens (human)Potency89.12510.050127.073689.1251AID588590
gemininHomo sapiens (human)Potency18.35640.004611.374133.4983AID624296
lamin isoform A-delta10Homo sapiens (human)Potency25.11890.891312.067628.1838AID1487
TAR DNA-binding protein 43Homo sapiens (human)Potency31.62281.778316.208135.4813AID652104
Rap guanine nucleotide exchange factor 4Homo sapiens (human)Potency50.11873.981146.7448112.2020AID720708
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (27)

Processvia Protein(s)Taxonomy
negative regulation of protein phosphorylationTAR DNA-binding protein 43Homo sapiens (human)
mRNA processingTAR DNA-binding protein 43Homo sapiens (human)
RNA splicingTAR DNA-binding protein 43Homo sapiens (human)
negative regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
regulation of protein stabilityTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of insulin secretionTAR DNA-binding protein 43Homo sapiens (human)
response to endoplasmic reticulum stressTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of protein import into nucleusTAR DNA-binding protein 43Homo sapiens (human)
regulation of circadian rhythmTAR DNA-binding protein 43Homo sapiens (human)
regulation of apoptotic processTAR DNA-binding protein 43Homo sapiens (human)
negative regulation by host of viral transcriptionTAR DNA-binding protein 43Homo sapiens (human)
rhythmic processTAR DNA-binding protein 43Homo sapiens (human)
regulation of cell cycleTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA destabilizationTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA stabilizationTAR DNA-binding protein 43Homo sapiens (human)
nuclear inner membrane organizationTAR DNA-binding protein 43Homo sapiens (human)
amyloid fibril formationTAR DNA-binding protein 43Homo sapiens (human)
regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
adaptive immune responseRap guanine nucleotide exchange factor 4Homo sapiens (human)
G protein-coupled receptor signaling pathwayRap guanine nucleotide exchange factor 4Homo sapiens (human)
adenylate cyclase-activating G protein-coupled receptor signaling pathwayRap guanine nucleotide exchange factor 4Homo sapiens (human)
calcium-ion regulated exocytosisRap guanine nucleotide exchange factor 4Homo sapiens (human)
regulation of exocytosisRap guanine nucleotide exchange factor 4Homo sapiens (human)
insulin secretionRap guanine nucleotide exchange factor 4Homo sapiens (human)
positive regulation of insulin secretionRap guanine nucleotide exchange factor 4Homo sapiens (human)
regulation of synaptic vesicle cycleRap guanine nucleotide exchange factor 4Homo sapiens (human)
Ras protein signal transductionRap guanine nucleotide exchange factor 4Homo sapiens (human)
regulation of insulin secretionRap guanine nucleotide exchange factor 4Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (14)

Processvia Protein(s)Taxonomy
RNA polymerase II cis-regulatory region sequence-specific DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
double-stranded DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
RNA bindingTAR DNA-binding protein 43Homo sapiens (human)
mRNA 3'-UTR bindingTAR DNA-binding protein 43Homo sapiens (human)
protein bindingTAR DNA-binding protein 43Homo sapiens (human)
lipid bindingTAR DNA-binding protein 43Homo sapiens (human)
identical protein bindingTAR DNA-binding protein 43Homo sapiens (human)
pre-mRNA intronic bindingTAR DNA-binding protein 43Homo sapiens (human)
molecular condensate scaffold activityTAR DNA-binding protein 43Homo sapiens (human)
guanyl-nucleotide exchange factor activityRap guanine nucleotide exchange factor 4Homo sapiens (human)
protein bindingRap guanine nucleotide exchange factor 4Homo sapiens (human)
cAMP bindingRap guanine nucleotide exchange factor 4Homo sapiens (human)
protein-macromolecule adaptor activityRap guanine nucleotide exchange factor 4Homo sapiens (human)
small GTPase bindingRap guanine nucleotide exchange factor 4Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (13)

Processvia Protein(s)Taxonomy
intracellular non-membrane-bounded organelleTAR DNA-binding protein 43Homo sapiens (human)
nucleusTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
perichromatin fibrilsTAR DNA-binding protein 43Homo sapiens (human)
mitochondrionTAR DNA-binding protein 43Homo sapiens (human)
cytoplasmic stress granuleTAR DNA-binding protein 43Homo sapiens (human)
nuclear speckTAR DNA-binding protein 43Homo sapiens (human)
interchromatin granuleTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
chromatinTAR DNA-binding protein 43Homo sapiens (human)
cytosolRap guanine nucleotide exchange factor 4Homo sapiens (human)
plasma membraneRap guanine nucleotide exchange factor 4Homo sapiens (human)
membraneRap guanine nucleotide exchange factor 4Homo sapiens (human)
hippocampal mossy fiber to CA3 synapseRap guanine nucleotide exchange factor 4Homo sapiens (human)
plasma membraneRap guanine nucleotide exchange factor 4Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (13)

Assay IDTitleYearJournalArticle
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (5)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's3 (60.00)24.3611
2020's1 (20.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.56

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.56 (24.57)
Research Supply Index1.79 (2.92)
Research Growth Index4.36 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.56)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other5 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]